EVALUATION AND FUTURE PROJECTION OF REGIONAL DROUGHT EVENTS IN YUNNAN PROVINCE USING CMIP6 MODEL PRODUCTS
-
摘要: 21世纪以来,云南频繁发生全省性干旱过程,造成严重的灾害。未来在气候变化背景下云南全省性干旱过程将如何变化尚未得到充分研究。基于16个第六次耦合模式比较计划(CMIP6)的模式结果和区域性干旱过程监测评估方法,研究了云南省区域性干旱过程历史时期的特征和未来不同排放情景下的可能变化。结果显示,适当订正后的CMIP6模式能较好地模拟出近54年云南省区域干旱事件的特征,模式偏差主要表现为夏季降水偏多、10—11月降水偏少。未来54年在三种排放情景下,云南省区域性干旱过程发生次数将增加1.1~4.7次,持续日数将增加2.6~4.0日,影响范围将增加0.2~0.6站,累计强度将增加0.1~0.2。未来发生在干季内的干旱过程次数将减少,但持续日数、影响范围、累计强度都将增加;由干季延伸至雨季的干旱过程次数、持续时间、累计强度都将增加;发生在雨季内的干旱过程次数和影响范围将增加、累计强度将减小。滇西北、滇东北等受干旱过程影响较轻的地区未来也将更容易受到干旱过程的影响。上述结果表明未来云南省全省性干旱过程将加强。
-
关键词:
- 云南 /
- 气象干旱综合指数(MCI) /
- 区域性干旱过程 /
- CMIP6 /
- 未来预估
Abstract: Yunnan was strike by a series of province-wide severe drought processes since the 21st century. The future change of province-wide drought process in Yunnan under the context of climate change remains unclear. Based on 16 CMIP6 model outputs and the monitoring and assessment method for regional drought process, the present study investigated the characteristics of the regional drought process in recent years as well as its future projections in Yunnan under different emission scenarios. The results showed that after bias correction, the CMIP6 models could reasonably simulate the characteristics of the regional drought processes in Yunnan in recent 54 years. The CMIP6 models overestimated the precipitation in summer and underestimated the precipitation in October and November. In the future and under three different emission scenarios, the number of regional drought processes in Yunnan would increase by 1.1~4.7 times, the duration would increase by 2.6~4.0 days, the influencing range would increase by 0.2~0.6 stations, and the accumulated strength would increase by 0.1~0.2. The frequency of drought process during dry season would drop, but the duration, influencing range, and cumulative intensity would increase. The drought process occurred in dry season and prolonged to wet season would become more frequent and have longer duration as well as stronger accumulated strength. The drought process during rainy season would become more frequent with longer duration and weaker accumulated strength. The northwestern and northeastern parts of Yunnan, which were less affected by the regional drought processes in history, would become more vulnerable to the regional drought processes in the future. These results suggest that the province-wide drought process in Yunnan will strengthen in the future. -
表 1 本文使用的CMIP6模式
序号 模式名称 水平分辨率 模式在云南的格点数 1 ACCESS-CM2 $ 1.875^{\circ} \times 1.250^{\circ} $ 14 2 ACCESS-ESM1-5 $ 1.875^{\circ} \times 1.250^{\circ} $ 14 3 BCC-CSM2-MR $ 1.125^{\circ} \times 1.125^{\circ} $ 31 4 CESM2-WACCM $ 1.250^{\circ} \times 0.938^{\circ} $ 29 5 CMCC-CM2-SR5 $ 1.250^{\circ} \times 0.938^{\circ} $ 29 6 CMCC-ESM2 $ 1.250^{\circ} \times 0.938^{\circ} $ 29 7 CNRM-ESM2-1 $ 1.406^{\circ} \times 1.406^{\circ} $ 15 8 FGOALS-g3 $ 2.00^{\circ} \times 2.25^{\circ} $ 7 9 GFDL-ESM4 $ 1.25^{\circ} \times 1.00^{\circ} $ 27 11 INM-CM5-0 $ 2.0^{\circ} \times 1.5^{\circ} $ 12 12 MIROC6 $ 1.406^{\circ} \times 1.406^{\circ} $ 15 13 MIROC-ES2L $ 2.812^{\circ} \times 2.812^{\circ} $ 4 14 MPI-ESM1-2-HR $ 0.938^{\circ} \times 0.938^{\circ} $ 37 15 MRI-ESM2-0 1.125°×1.125° 31 16 NorESM2-LM 2.500°×1.875° 8 表 2 观测和使用不同订正方法处理的CMIP6模式模拟的1961—2014年云南省区域性干旱过程
数据来源 过程次数 持续时间/天 影响范围/站 累计强度 观测 60 68.6 91.7 7.8 模拟_raw 41.7 43.3 98.2 6.6 模拟_mon 59.0 51.5 99.2 6.9 模拟_QM 63.3 59.0 98.5 7.4 表 3 观测和模拟的1961—2014年云南省5种类型的区域性干旱过程特征
统计参数 数据来源 干季型 雨季型 干季偏长型 雨季偏短型 极端型 过程次数 观测 20.0 16.0 15.0 4.0 5.0 模拟 26.2 13.4 13.9 8.6 1.2 持续时间/天 观测 49.2 46.6 72.9 57.0 212.8 模拟 49.1 32.8 69.4 85.3 212.3 影响范围/站 观测 92.5 92.4 88.8 95.9 99.0 模拟 99.6 95.0 99.0 99.5 107.7 累计强度 观测 6.2 6.6 8.4 6.2 17.1 模拟 6.3 5.7 8.7 8.9 18.2 表 4 不同情景下未来54年(2022—2075年)云南省区域性干旱过程相对于近54年(1961—2014年)变化
参数 情景 干季型 雨季型 干季偏长型 雨季偏短型 极端型 全部过程 过程次数 SSP1-2.6 -0.8 0.8 $ 1.0^{*} $ $ -0.3^{*} $ $ 0.4^{*} $ $ 1.1(-4.5 \sim 4.5) $ SSP2-4.5 $ -1.3^{*} $ $ 3.2 * * $ $ 1.4^{*} $ 0.6 $ 0.8^{*} $ $ 4.7 *(0 \sim 7) $ SSP5-8.5 $ -4.1 * * $ $ 4.6^{* *} $ $ 1.6^{* *} $ $ 1.6^{* *} $ $ 0.8^{*} $ $ 4.4^{*}(-1 \sim 11) $ 持续时间/天 SSP1-2.6 $ 1.1^{*} $ $ -0.7^{*} $ $ 4.9 * $ $ 3.0^{*} $ 10.2 $ 2.6^{*}(-2.9 \sim 7.9) $ SSP2-4.5 $ 3.4^{* *} $ $ -3.7 * * $ $ 5.9^{* *} $ $ 5.4^{*} $ -1.8 $ 3.3 *(-1.1 \sim 7.7) $ SSP5-8.5 $ 3.9^{* *} $ 0.6 $ 7.7^{* *} $ $ -1.1^{*} $ 9.8 $ 4.0 * *(1.5 \sim 8.9) $ 影响范围/站 SSP1-2.6 0.1 $ 1.7^{* *} $ 0 $ -1.1^{*} $ -2.8 $ 0.4^{*}(-0.7 \sim 1.8) $ SSP2-4.5 $ 0.5^{*} $ $ 1.6^{*} $ -0.2 0.2 -2.1 $ 0.2(-0.8 \sim 1.3) $ SSP5-8.5 0.1 $ 1.5^{*} $ $ 1.9 * * $ 0.1 -1.1 $ 0.6(-0.6 \sim 1.7) $ 累计强度 SSP1-2.6 $ 0.2 * $ -0.1 $ 0.2^{*} $ $ 0.1 * $ -1.1 $ 0.2 *(-0.3 \sim 0.6) $ SSP2-4.5 $ 0.2 * $ $ -0.4^{*} $ $ 0.3^{*} $ 0.3 -1.5 $ 0.1(-0.2 \sim 0.2) $ SSP5-8.5 $ 0.1^{*} $ $ -0.1^{*} $ $ 0.6^{* *} $ $ -0.2 * $ -0.4 $ 0.2 *(-0.1 \sim 0.5) $ -
[1] HE B, LV A F, WU J J, et al. Drought hazard assessment and spatial characteristics analysis in China[J]. J Geogr Sci, 2011, 21(2): 235-249. [2] 晏红明, 段旭, 程建刚. 2005年春季云南异常干旱的成因分析[J]. 热带气象学报, 2007, 23(3): 300-306. [3] 杨辉, 宋洁, 晏红明, 等. 2009/2010年冬季云南严重干旱的原因分析[J]. 气候与环境研究, 2012, 17(3): 315-326. [4] SUN S, LI Q, LI J, et al. Revisiting the evolution of the 2009-2011 meteorological drought over Southwest China[J]. J Hydrol, 2019, 568: 385-402. [5] 王遵娅, 任福民, 孙冷, 等. 2011年夏季气候异常及主要异常事件成因分析[J]. 气象, 2012, 38(4): 448-455. [6] LU C, JIANG J, CHEN R, et al. Anthropogenic influence on 2019 May-June extremely low precipitation in southwestern China[J]. Bull Amer Meteor Soc, 2021, 102(1): 97-102. [7] WANG L, CHEN W, ZHOU W, et al. Drought in Southwest China: A review[J]. Atmos Ocean Sci Lett, 2015, 8(6): 339-344. [8] 王学锋. 区域动态气象干旱强度指数及其应用[J]. 气象科技, 2012, 40(4): 601-605. [9] REN F M, CUI D L, GONG Z Q, et al. An objective identification technique for regional extreme events[J]. J Climate, 2012, 25(20): 7015- 7027. [10] XU K, YANG D W, XU X Y, et al. Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China [J]. J Hydrol, 2015, 527: 630-640. [11] 金燕, 况雪源, 晏红明, 等. 近55年来云南区域性干旱事件的分布特征和变化趋势研究[J]. 气象, 2018, 44(9): 1169-1178. [12] 李韵婕, 任福民, 李忆平, 等. 1960—2010年中国西南地区区域性气象干旱事件的特征分析[J]. 气象学报, 2014, 72(2): 266-276. [13] 张超, 罗伯良. 湖南夏秋季持续性区域气象干旱的时空特征[J]. 干旱气象, 2021, 39(2): 193-202. [14] 张强, 谢五三, 陈鲜艳, 等. 1961—2019年长江中下游区域性干旱过程及其变化[J]. 气象学报, 2021, 79(4): 570-581. [15] WANG L, CHEN W, ZHOU W. Assessment of future drought in Southwest China based on CMIP5 multimodel projections[J]. Adv Atmos Sci, 2014, 31(5): 1035-1050. [16] 王美丽, 高学杰, 石英, 等. Regcm4模式对云南及周边地区干旱化趋势的预估[J]. 高原气象, 2015, 34(3): 706-713. [17] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. [18] EYRING V, BONY S, MEEHL G A, et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937-1958. [19] JIANG D B, HU D, TIAN Z P, et al. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian Monsoon[J]. Adv Atmos Sci, 2020, 37(10): 1102-1118. [20] CHEN H P, SUN J Q, LIN W Q, et al. Comparison of CMIP6 and CMIP5 models in simulating climate extremes[J]. Chin Sci Bull, 2020, 65 (17): 1415-1418. [21] XIN X G, WU T W, ZHANG J, et al. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon[J]. Int J Climatol, 2020, 40(15): 6423-6440. [22] HAUSFATHER Z, MARVEL K, SCHMIDT G A, et al. Climate simulations: Recognize the'hot model'problem[J]. Nat, 2022, 605(7908): 26-29. [23] 胡芩, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938. [24] 童尧, 高学杰, 韩振宇, 等. 基于regcm4模式的中国区域日尺度降水模拟误差订正[J]. 大气科学, 2017, 41(6): 1156-1166. [25] 江晓菲, 江志红, 李伟. 全球增温1.5和2 ℃下中国东部极端高温风险预估[J]. 大气科学学报, 2020, 43(6): 1056-1064. [26] FOWLER H J, KILSBY C G. Using regional climate model data to simulate historical and future river flows in northwest England[J]. Climatic Change, 2007, 80(3-4): 337-367. [27] 王素萍, 王劲松, 张强, 等. 几种干旱指标对西南和华南区域月尺度干旱监测的适用性评价[J]. 高原气象, 2015, 34(6): 1616-1624. [28] THORNTHWAITE C W. An approach toward a rational classification of climate[J]. Geogr Rev, 1948, 38(1): 55-94. [29] SUN S, CHEN H, JU W, et al. On the coupling between precipitation and potential evapotranspiration: Contributions to decadal drought anomalies in the Southwest China[J]. Climate Dyn, 2017, 48(11-12): 3779-3797. [30] HAWKINS E, SUTTON R. The potential to narrow uncertainty in regional climate predictions[J]. Bull Amer Meteor Soc, 2009, 90(8): 1095-1107. -