MESOSCALE FEATURES OF A SQUALL LINE IN SPRING 2013
-
摘要: 运用多种观测数据,结合WRF模式分析了2013年3月19日发生在黔湘地区一次飑线形成期的中尺度特征。(1)此次飑线发生在高空500 hPa槽前的西南气流中,地面冷锋附近。环境风为西南向,且垂直于飑线长轴的分量小于沿着飑线长轴的分量。(2)飑线东、西两段存在显著差异:东段所在环境干燥,下沉对流有效位能DCAPE大,故雷暴大风强而短时强降水弱,对流单体初始于锋区及冷空气一侧,呈碎块状分布;西段环境湿润,短时强降水和冰雹集中,对流单体出现于地面锋区附近中尺度辐合线内,辐合线持久,其上辐合中心处不断有单体新生。(3)此次过程有重力波作用,且飑线西段重力波特征更明显。急流中的波动与中尺度辐合线相交,波动上升气流叠加辐合线上升运动,引起对流发生并迅猛发展,使得对流单体趋向于沿着波动等振幅面排列成带状,进而形成飑线。(4)旧单体南、北两侧均有新对流单体发生:北侧新单体高、低层重力波反相位叠加,对流受到抑制;南侧的新单体高、低层波动同相,上升气流加强,对流得以发展;新旧单体不断迭代更新,飑线整体向东南传播。Abstract: Based on several kinds of observational data and numerical simulation, the mesoscale features of a strong squall line on March 19, 2013, in southern China were investigated. The results show that: (1) The squall line occurred in front of a 500-hPa trough and was near a cold front on the ground. The ambient wind was mainly southwestern, and its cross-line component was smaller than the along-line component. (2) There were significant differences between the east and the west of the squall line. The eastern part was dry, and the DCAPE was large; as a result, short-term heavy rainfall was weaker than that in the western part, while thunderstorm gales were stronger. Convective cells in the eastern part initially distributed in a fragmented manner at the cold side of the frontal zone. The western part was humid, with short-term heavy rainfall and concentrated hail. Convective cells appeared within the mesoscale convergence line near the surface front area, and the convergence line was persistent. There are constantly new cells growing at the convergence center above them. (3) The gravity waves affected the maintenance of the squall line, and their effect in the western part was obviously stronger than that in the eastern part. When the updraft of the jet intersected with the convergent line, the lower-level updraft at the intersection strengthened and led to convective initiation (CI). Finally, the squall line formed along the amplitude of the gravity waves. (4) New convective cells emerged in both the north and the south of older cells. The upper and lower gravity waves of those new cells in the north were out of phase, restraining the convection; however, they were in phase in the southern new cells, which positively contributed to CI. New cells continued to emerge and replaced old ones, and the squall line propagated to the southeast.
-
Key words:
- baroclinic frontogenesis /
- squall line /
- convection cell /
- mesoscale /
- gravity wave
-
图 3 2013年3月19日12:00 500 hPa(a)、700 hPa(b)、850 hPa(c)、地面(d)天气图,贵阳(e)、桂林(f)、郴州(g)探空图及桂林(红色)、郴州(黑色)站相对于飑线的风场在垂直于飑线长轴(实线)和平行长轴(长虚线)的分量廓线图(h)
其中a~d中紫色方框为对流起始区,绿色方框为飑线经过区; 粗棕线代表槽线或切变线,蓝粗线代表地面冷锋,黑色等值线为位势高度(单位:dagpm)或海平面气压,红色等值线为温度(单位:℃),蓝色风向杆(每长杠10 m/s),彩色阴影为风速大小(单位:m/s)或雷达组合反射率因子(单位:dBZ);c中紫色数字为各站点的温度露点差。e~g中黑线为温度层结曲线,紫线为状态曲线,绿线为露点温度曲线及单站风廓线黑色风向杆。
图 9 图 7中O点处各要素随时间的变化
a. 2 km(黑色实线)、4 km(点线)和9 km(长短虚线)高度上的垂直速度(单位:m/s);b. 0~12 km垂直速度(其中>0 m/s的区域填黄色);c. 0~12 km内云水混合比(填色,g/kg),雨水混合比(黑线,g/kg),雷达反射率因子(≥20dBz,红线,等值线间隔10 dBZ);d. a~c中蓝色箭头所示的两次沉降、两次上升过程中垂直速度的垂直分布廓线。
表 1 贵阳、桂林、郴州站主要的探空参数
CAPE/(J/kg) CIN/(J/kg) LI/K K DCAPE(600) T-Td(850 hPa) △U(0~3 km) △U(0~6 km) 贵阳 891 150 -3 34 630 4 22.2 30.7 桂林 59 552 0.5 29 / 7 21.1 34.2 郴州 1114 208 -3 30 1380 1 20.3 34.2 -
[1] 丁一汇, 李鸿洲, 章名立, 等. 我国飑线发生条件的研究[J]. 大气科学, 1982, 6(1): 19-27. [2] 蔡则怡, 李鸿洲, 李焕安. 华北飑线系统的结构和演变特征[J]. 大气科学, 1988, 12(2): 191-199. [3] 翟国庆, 俞樟孝. 华东飑线过程中的地面中尺度物理特征[J]. 大气科学, 1991, 15(6): 63-69. 533热带气象学报第39卷 [4] BLUESTEIN H B, JAIN M H. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring[J]. J Atmos Sci, 1985. 42(16): 1 711-1 732. [5] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128: 3 413- 3 436. [6] TEPPER M. A proposed mechanism for squall lines: The pressure jump line[J]. J Meteor, 1950, 7: 21-29. [7] TEPPER M. On the generation of pressure jump lines by the impulsive addition of momentum to simple current systems[J]. J Meteor, 1955, 12: 287-297. [8] 李麦村. 大气中飑线形成的非线性过程与KDV方程[J]. 中国科学, 1981, 3: 341-350. [9] 朱磊磊, 吴增茂, 邰庆国, 等. 山东04.28强飑线过程重力波结构的分析[J]. 热带气象学报, 2009, 25: 465-474. [10] BOSART L F, SANDERS F. Mesoscale Structure in the Megalopolitan Snowstorm of 11-12 February 1983. Part Ⅲ: A Large-Amplitude Gravity Wave[J]. J Atmos Sci, 1986, 43(9): 924-939. [11] MAPES B E. Gregarious Tropical Convection[J]. J Atmos Sci, 1993, 50(13): 2 026-2 037. [12] LANE T P, REEDER M J, CLARK T L. Numerical modeling of gravity wave generation by deep tropical convection[J]. J Atmos Sci, 2001, 58(10): 1 249-1 274. [13] LIU L, RAN L, SUN X. Analysis of the structure and propagation of a simulated squall line on 14 June 2009[J]. Adv Atmos Sci, 2015, 32 (8): 1 049-1 062. [14] 孙淑清. 低空急流对内重力波不稳定发展的作用[J]. 大气科学, 1983, 7(2): 136-144 [15] ZHANG F Q, KOCH S E, DAVIS C A, et al. Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the east coast of the United States[J]. Quart J Roy Meteor Soc, 2001, 127: 2 209-2 245. [16] ZHANG D L, FRITSCH J M. Numerical simulation of the 1977 meso-β scale structure and evolution of the Johnstown flood, part Ш: Internal gravity and squall line[J]. J Atmos Sci, 1988, 45(7): 1 252-1 268. [17] SMITH R B, WOODS B K, JENSEN J, et al. Mountain waves entering the stratosphere[J]. J Atmos Sci, 2008, 65(8): 2 543-2 562. [18] HUGHES M, HALL A, FOVELL R G. Blocking in areas of complex topography and its influence on rainfall distribution[J]. J Atmos Sci, 2009, 66(2): 508-518. [19] WANG S, ZHANG F. Source of gravity waves within a vortex—dipole jet revealed by a linear model[J]. J Atmos Sci, 2010, 67(5): 1 438- 1 455. [20] PLOUGONVEN R, ZHANG F. Internal gravity waves from atmospheric jets and fronts[J]. Rev Geophys, 2014, 52(1): 33-76. [21] STEPHAN C C, ALEXANDER M J, HEDLIN M, et al. A case study on the far—field properties of propagating tropospheric gravity waves[J]. Mon Wea Rev, 2016, 144(8): 2 947-2 961. [22] 林永辉, 廖清海, 王鹏云. 低空急流形成发展的一种可能机制-重力波的惯性不稳定[J]. 气象学报, 2003, 61(3): 374-378. [23] NEWTON C. W. Structure and mechanism of the prefrontal squall line[J]. J Meteor, 1950, 7: 210-222. [24] FUJITA T T. Results of detailed synoptic studies of squall lines[J]. Tellus, 1955, 7: 405-436. [25] ROTUNNO R, KLEMP J B, WEISMAN M L. A theory for strong long-lived squall lines[J]. J Atmos Sci, 1988, 45: 463-484. [26] WEISMAN M L, KLEMP J B, ROTUNNO R. Structure and evolution of numerically simulated squall lines[J]. J Atmos Sci, 1988, 45: 1 990-2 013. [27] MENG Z, ZHANG F, MARKOWSKI P, et al. A modeling study on the development of bowing structure and associated rear inflow within a squall line over South China[J]. J Atmos Sci, 2012, 69: 1 182-1 207. [28] BEI N, ZHANG F. Impacts of initial error scale and amplitude on the mesoscale predictability of heavy precipitation along the Mei-yu front of China[J]. Quart J Roy Meteor Soc, 2006, 133(622): 83-99. [29] ZHAI D, LIN Y. The Mesoscale Predictability of a Heavy Precipitation Event[J]. J Meteor Res, 2009, 23(4): 403-412. [30] GRADY R L, VERLINDE J. Triple-doppler analysis of a discretely propagating, long-lived, high plains squall line[J]. J Atmos Sci, 1997, 54: 2 729-2 748.