Environmental Conditions and Radar Monitoring of the Tornado on July 21, 2021 in Qingyuan District, Baoding City
-
摘要: 利用石家庄新乐SA型多普勒天气雷达资料、雄安新区安新东白庄X波段相控阵多普勒天气雷达资料、ERA5再分析资料和常规观测资料对2021年7月21日河北省保定市清苑区东闾村龙卷过程进行了详细分析。结果如下:(1)龙卷于15时43分开始,历时22分钟,根据灾情判定此次龙卷为EF2级。造成此次龙卷的影响系统不典型,500 hPa及以下为切变或风速辐合区,700 hPa急流不仅输送了暖湿空气,加强了不稳定,还加大了垂直风切变,有利于强对流的生成和发展。(2)造成龙卷的微型超级单体风暴环境场特征:CAPE达到1 680.3 J/kg,0~3 km垂直风切变较大为17.1 m/s,0~1 km垂直风切变为7.1 m/s,0~6 km垂直风切变较小为7 m/s,湿层相对深厚,抬升凝结高度为316.1 m。(3)SA型多普勒天气雷达和X波段相控阵雷达观测到的1 km以上中气旋起止时间、强度、伸展高度和演变趋势基本一致。(4)X波段相控阵雷达径向分辨率很高,同时龙卷距离雷达较近,因而方位角方向分辨率也很高,观测更精细。X波段相控阵雷达在龙卷发生前5分钟到龙卷结束持续观测到1 km以下的低层中气旋,对发布龙卷预警有很好的指示意义。X波段相控阵雷达清晰地观测到钩状回波顶点附近低层的辐合流场,辐合高度可达2 km以上,证实了沿龙卷路径地面是辐合流场的结论。(5)在龙卷形成前14分钟X波段相控阵雷达观测到超单体风暴后侧下沉气流,后侧下沉气流温度低于环境温度,同时在龙卷形成位置中低层观测到强的辐合上升运动,这些观测特征验证了美国学者关于低层中气旋的形成机理。(6)低层中气旋生成后,X波段相控阵雷达观测到低层辐合迅速加强,达到最强时龙卷形成,验证了美国学者关于低层中气旋形成后还需要低层强辐合以及中层强上升气流的向上垂直拉升,龙卷才能形成的机理。Abstract: The current study presented a detailed analysis of the tornado events on July 21, 2021, in Donglü Village, Qingyuan District, Baoding City, Hebei Province, by using data from the SA-band Doppler Weather Radar in Shijiazhuang City and the X-Band Phased Array Doppler Weather Radar in Xiong'an New Area, ERA5 Reanalysis data and conventional observations data. The results were as follows: (1) The tornado began at 15: 53 and lasted 22 minutes. According to the extent of damage, the tornado was classified as EF2. The tornado was not caused by a typical weather system; instead, there were shear or wind speed convergence areas below 500hPa. The 700 hPa jet stream brought warm and moist air, enhancing instability and increasing vertical wind shear, which facilitated the development of strong convection. (2) The environmental characteristics of the mini-supercell storm that generated the tornado included a convective available potential energy of 1680.3 J/kg. The vertical wind shear for 0-3 km was 17.1 m/s, indicating a strong shear. The vertical wind shear for 0-1 km was 7.1 m/s, while for 0-6 km, it was 7 m/s, indicating a smaller shear. The wet layer was relatively deep, and the lifting condensation level was observed at 316.1 km. (3) The starting and ending time, intensity, extension height, and evolution trend of the mesocyclone above 1 km observed by the SA-band Doppler Weather Radar and the X-band Phased Array Radar were basically consistent. (4) The X-band Phased Array Radar provided precise observations with its high radial resolution and proximity to the tornado. It continuously monitored a low-level mesocyclone below 1 km from 5 minutes before the tornado formation until its end, indicating the imminent occurrence of the tornado. The X-band Phased Array Radar also clearly observed the convergent flow field near the apex of the hook echo with convergence heights reaching more than 2 km, confirming the presence of a convergent flow field along the tornado's path. (5) The rear-side downdraft of the supercell storm was observed by the X-band Phased Array Radar 14 minutes before tornado formation. The temperature of the rear-side downdraft was lower than the environmental temperature. Strong convergence and upward movement were observed in the middle and lower layers of the area where the tornado formed, consistent with the formation mechanism of mesocyclones in the lower layers proposed by American scholars. (6) After the mesocyclone was formed in the lower layer, the X-band Phased Array Radar observed a rapid strengthening of convergence in the lower layers. The tornado formed when the convergence reached its peak, validating the mechanism proposed by American scholars that strong convergence in the lower layers and upward vertical uplift of the strong updraft in the middle layers are necessary for tornado formation.
-
Key words:
- tornado /
- mini-supercell /
- mesocyclone /
- X-band radar /
- formation mechanism of tornado
-
图 12 同图 11,但时间为2021年7月21日15时44分、15时58分、16时03分、16时08分
-
[1] 郑永光. 中国龙卷气候特征和环境条件研究进展综述[J]. 气象科技进展, 2020, 10(6): 69-75. [2] 范雯杰, 俞小鼎. 中国龙卷的时空分布特征[J]. 气象, 2015, 41(7): 793-805. [3] 姚叶青, 郝莹, 张义军, 等. 安徽龙卷发生的环境条件和临近预警[J]. 高原气象, 2012, 31(6): 1 721-1 730. [4] 冯佳玮, 闵锦忠, 庄潇然. 中国龙卷时空分布及其环境物理量特征[J]. 热带气象学报, 2017, 33(4): 530-539. [5] 俞小鼎, 郑媛媛, 廖玉芳, 等. 一次伴随强烈龙卷的强降水超级单体风暴研究[J]. 大气科学, 2008, 32(3): 508-522. [6] 张一平, 俞小鼎, 吴蓁, 等. 区域暴雨过程中两次龙卷风事件分析[J]. 气象学报, 2012, 70(5): 961-973. [7] 周海光. "6.23"江苏阜宁EF4级龙卷超级单体风暴中尺度结构研究[J]. 地球物理学报, 2018, 61(9): 3 617-3 639. [8] 王毅, 郑媛媛, 张晓美, 等. 夏季安徽槽前形势下龙卷和非龙卷型强对流天气的环境条件对比研究[J]. 气象, 2012, 38(12): 1 473-1 481. [9] 张琳娜, 郭锐, 何娜, 等. "7·21"北京特大暴雨过程龙卷形成可能性探究[J]. 高原气象, 2015, 34(4): 1 074-1 083. [10] 郑媛媛, 张备, 王晡华, 等. 台风龙卷的环境背景和雷达回波结构分析[J]. 气象, 2015, 41(8): 942-952. [11] 黄先香, 俞小鼎, 炎利军, 等. 1804号台风"艾云尼"龙卷分析[J]. 气象学报, 2019, 77(4): 645-661. [12] 李兆慧, 王东海, 麦雪湖, 等. 2015年10月4日佛山龙卷过程的观测分析. 气象学报, 2017, 75(2): 288-313. [13] 王秀明, 俞小鼎, 周小刚. 中国东北龙卷研究: 环境特征分析[J]. 气象学报, 2015, 73(3): 425-441. [14] 袁潮, 王式功, 马湘宜, 等. 2019年7月3日开原龙卷形成环境背景及机理探究[J]. 高原气象, 2021, 40(2): 384-393. [15] 俞小鼎, 王秀明, 李万莉, 等. 雷暴与强对流临近预报[M]. 北京: 气象出版社, 2020: 259-277. [16] 郑媛媛, 朱红芳, 方翔, 等. 强龙卷超级级单体风暴特征分析与预警研究[J]. 高原气象, 2009, 28(3): 617-625. [17] 黄先香, 俞小鼎, 炎利军, 等. 珠江三角洲台风龙卷的活动特征及环境条件分析[J]. 气象, 2019, 45(6): 777-790. [18] 郑永光, 蓝渝, 曹艳察, 等. 2019年7月3日辽宁开原EF4级强龙卷形成条件、演变特征和机理[J]. 气象, 2020, 46(5): 589-602. [19] 吴芳芳, 俞小鼎, 张志刚, 等. 苏北地区超级单体风暴环境条件与雷达回波特征[J]. 气象学报, 2013, 71(2): 209-227. [20] 张小玲, 杨波, 朱文剑, 等. 2016年6月23日江苏阜宁EF4级龙卷天气分析[J]. 气象, 2016, 42(11): 1 304-1 314. [21] 周后福, 刁秀广, 夏文梅, 等. 江淮地区龙卷超级单体风暴及其环境参数分析[J]. 气象学报, 2014, 72(2): 306-317. [22] TRAPP R J, STUMPF G J, MANROSS K L. A reassessment of the percentage of tornadic mesocyclones[J]. Weather and Forecasting, 2005, 20(4): 680-687. [23] 林应, 王啸华, 顾沛澍, 等. 2016年夏季如东一次EF2级龙卷多普勒天气雷达特征分析[J]. 气象科学, 2018, 38(3): 392-398. [24] 吴俞, 薛谌彬, 郝丽清, 等. 强台风"山神"外围超级单体引发的龙卷分析[J]. 热带气象学报, 2015, 31(2): 213-222. [25] 陈元昭, 俞小鼎, 陈训来, 等. 2015年5月华南一次龙卷过程观测分析[J]. 应用气象学报, 2016, 27(3): 334-341. [26] 戴建华, 王国荣, 龚剑, 等. 梅雨锋中尺度涡旋内微型超级单体龙卷的形成研究[J]. 热带气象学报, 2021, 37(5/6): 693-702. [27] 张建云, 张持岸, 葛元, 等. 1522号台风外围佛山强龙卷X波段双偏振多普勒雷达反射率因子特征[J]. 气象科技, 2018, 46(6): 706-718. [28] 黄先香, 炎利军, 王硕甫, 等. 1822号"山竹"台风龙卷过程观测与预警分析[J]. 热带气象学报, 2019, 35(4): 458-469. [29] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征[J]. 应用气象学报, 2020, 31(1): 163-169. [30] EVANS J S AND DOSWELL C A Ⅲ. Investigating derecho and supercell proximity soundings[C]//21th Conf On Local Severe Storm. San Antonio: AMS 2002: 635-638. [31] 蔡康龙, 俞小鼎, 李彩玲, 等. 2019年广西临桂微下击暴流和广东湛江龙卷现场灾情调查对比分析[J]. 气象, 2021, 47(2): 230-241. [32] 俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006: 116-121. [33] DAVID-JONES R P. Streamwise vorticity: The origin of updraft rotation in supercell storms[J]. Atmos Sci, 1984, 41(20): 2 991-3 006. [34] YU X D, WANG X M, ZHAO J, et al. Investigation of supercells in China: Environmental and storm characteristics//Proceedings of the 26th Conference on Severe Local Storms. Nashville, TN: American Meteorological Society, 2012. [35] DAVID-JONES R, BROOKS H E. Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction and Hazards[M]. Geophys Monogr, No. 79, Amer Geophys Union, 1993: 105-114. [36] MARKOWSKI P M, RICHARDSON Y. Mesoscale Meteorology in Midlatitudes[M]. Chichester, West Sussex, UK: Wiley-Blackwell Publication, 2010: 406 pp. [37] MARKOWSKI P M, RICHARDSON Y. What we know and don't know about tornodo formation[J]. Physics Today, 2014, 67(9): 26-31. [38] MARQUIS J, RICHARDSON Y, MARKOWSKI P, et al. Tornodo Maintenance Investigated with High-Resolution Dual-Doppler and EnKF Analysis[J]. Mon Wea Rev, 2012, 140(1): 3-27.