ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风“山竹”降水非对称特征及其与环境流场的相互作用研究

唐一宁 冶磊 李煜斌 高志球

唐一宁, 冶磊, 李煜斌, 高志球. 台风“山竹”降水非对称特征及其与环境流场的相互作用研究[J]. 热带气象学报, 2023, 39(5): 774-784. doi: 10.16032/j.issn.1004-4965.2023.067
引用本文: 唐一宁, 冶磊, 李煜斌, 高志球. 台风“山竹”降水非对称特征及其与环境流场的相互作用研究[J]. 热带气象学报, 2023, 39(5): 774-784. doi: 10.16032/j.issn.1004-4965.2023.067
TANG Yining, YE Lei, LI Yubin, GAO Zhiqiu. ON THE ASYMMETRIC CHARACTERISTICS OF TYPHOON'MANGKHUT' PRECIPITATION AND ITS INTERACTION WITH ENVIRONMENTAL FLOW FIELD[J]. Journal of Tropical Meteorology, 2023, 39(5): 774-784. doi: 10.16032/j.issn.1004-4965.2023.067
Citation: TANG Yining, YE Lei, LI Yubin, GAO Zhiqiu. ON THE ASYMMETRIC CHARACTERISTICS OF TYPHOON"MANGKHUT" PRECIPITATION AND ITS INTERACTION WITH ENVIRONMENTAL FLOW FIELD[J]. Journal of Tropical Meteorology, 2023, 39(5): 774-784. doi: 10.16032/j.issn.1004-4965.2023.067

台风“山竹”降水非对称特征及其与环境流场的相互作用研究

doi: 10.16032/j.issn.1004-4965.2023.067
基金项目: 

国家自然科学基金项目 42075072

详细信息
    通讯作者:

    李煜斌,男,江西省人,教授,从事大气边界层和热带气旋动力学研究。E-mail:liyubin@nuist.edu.cn

  • 中图分类号: P444

ON THE ASYMMETRIC CHARACTERISTICS OF TYPHOON"MANGKHUT" PRECIPITATION AND ITS INTERACTION WITH ENVIRONMENTAL FLOW FIELD

  • 摘要: 基于卫星降水数据和再分析资料,识别了台风“山竹”的降水非对称特征及其与垂直风切变的相关性,并进一步使用WRF模式数值模拟探究了非对称降水引发的热带气旋内部动力过程对环境流场的反馈作用。(1) 台风“山竹”降水分布表现出明显的非对称性,强降水主要集中在南侧,而台风的平均风切变指向西南侧,强降水总是位于顺风切变的左侧。(2) 台风发展初期风切变指向强降水方位,之后逆时针旋转并不断增大,转至指向南侧时达到最大值,之后逐渐减小。(3) 非对称降水位置的改变伴随着非对称风场的改变,并影响着非对称温压场变化,而温压场的变化又进一步改变非对称风和降水,所以台风与环境流场存在着相互影响的反馈关系。

     

  • 图  1  最佳路径数据集与TCE试验中的台风“山竹”

    a. 路径;b. 强度。a中黑线为最佳路径集,灰线为TCE。b中黑色为最佳路径数据集,灰色为TCE,实线为10 m最大风速,虚线为最低气压。

    图  2  台风“山竹”降水方位分布与风切变指向的时间序列

    a. GPM降水和ERA5风切变结果;b. TCE的结果。灰度填色图为降水,灰色短横线为风切的方向,黑色竖线之间的时间为分析台风降水与环境场的相互作用关系的时间段。

    图  3  距离台风“山竹”中心200~300 km环状区域内垂直各层平均风和风切变随时间变化

    a. ERA5结果;b. TCE结果;c. NTCE结果;d. TCE减去NTCE的结果。d中灰圈标注区域为台风动力引起非对称风变化的主要区域。

    图  4  台风“山竹”300 km范围内平均降水图

    a. 10日18时;b. 11日00时;c. 11日06时。

    图  5  台风“山竹”300 km范围内400 hPa垂直速度图

    正值为向上的垂直速度。a. 10日18时;b. 11日00时;c. 11日06时。

    图  6  400 hPa高度处TCE与NTCE的非对称风和一波位势高度场差异图(上),风场和一波温度图(下)

    范围为中心向四周1 200 km。a. 10日18时高度场;b. 11日00时高度场;c. 11日06时高度场;d. 10日18时温度场;e. 11日00时温度场;f. 11日06时温度场。

    图  7  图 6,但为800 hPa高度处

  • [1] 陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3): 420-432.
    [2] 韩林生, 高佳, 郭俊如, 等. 上层海洋对热带气旋的响与反馈研究进展[J]. 海洋通报, 2012, 31(2): 233-239.
    [3] 黄勇, 李崇银, 王颖, 等. 近百年西北太洋热带气旋频数变化特征与ENSO的关系[J]. 海洋预报, 2008, 25(2): 80-87.
    [4] 刘彤, 闫天池. 我国的主要气象灾害及其经济损失[J]. 自然灾害学报, 2011, 20(2): 90-95.
    [5] CORBOSIERO K L, MOLINARI J. The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones[J]. J Atmos Sci, 2003, 60(2): 366-376.
    [6] JONES S C. The evolution of vortices in vertical shear. Ⅰ: Initially barotropic vortices[J]. Quart J Roy Meteor Soc, 1995, 121(524): 821-851.
    [7] WANG Y, HOLLAND G J. Tropical cyclone motion and evolution in vertical shear[J]. J Atmos Sci, 1996, 53(22): 3 313-3 332.
    [8] BLACK P G, ANTHES R A. On the asymmetric structure of the tropical cyclone outflow layer[J]. J Atmos Sci, 1971, 28(8): 1 348-1 366.
    [9] LONFAT M, MARKS F D, CHEN S Y S. Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective[J]. Mon Wea Rev, 2004, 132(7): 1 645-1 660.
    [10] HENCE D A, HOUZE JR R A. Vertical structure of hurricane eyewalls as seen by the TRMM precipitation radar[J]. J Atmos Sci, 2011, 68 (8): 1 637-1 652.
    [11] HENCE D A, HOUZE JR R A. Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar[J]. J Atmos Sci, 2012, 69(9): 2 644-2 661.
    [12] 林爱兰, 万齐林, 梁建茵. 登陆华南热带气旋过程降水分析[J]. 热带气象学报, 2003, 19(S1): 65-73.
    [13] CHEN S, KNAFF J A, MARKS F D. Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM[J]. Mon Wea Rev, 2006, 134(11): 3 190-3 208.
    [14] GRAY W M. Global view of origin of tropical disturbances and storms[J]. Mon Wea Rev, 1968, 96(10): 669-700.
    [15] MCBRIDE J L, ZEHR R. Observational analysis of tropical cyclone formation. Part Ⅱ: Comparison of non-developing versus developing systems[J]. J Atmos Sci, 1981, 38(6): 1 132-1 151.
    [16] MERRILL R T. Environmental influences on hurricane intensification[J]. J Atmos Sci, 1988, 45(11): 1 678-1 687.
    [17] FRANK W M, RITCHIE E. Effects of environmental flow upon tropical cyclone structure[J]. Mon Wea Rev, 1999, 127(9): 2 044-2 061.
    [18] BENDER M A. The effect of relative flow in the asymmetric structure in the interior of hurricanes[J]. J Atmos Sci, 1997, 54(6): 703-724.
    [19] DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. J Atmos Sci, 1996, 53(14): 2 076-2 087.
    [20] REASOR P D, MONTGOMERY M T. Evaluation of a heuristic model for tropical cyclone resilience[J]. J Atmos Sci, 2015, 72(5): 1765-1782.
    [21] MERRILL R T. Characteristics of the upper-tropospheric environmental flow around hurricanes[J]. J Atmos Sci, 1988, 45(11): 1 665-1 677.
    [22] ONDERLINDE M J, NOLAN D. Tropical cyclone-relative environmental helicity and the pathways to intensification in shear[J]. J Atmos Sci, 2016, 73(2): 869-890.
    [23] ZENG Z H, WANG Y Q, CHEN L S. A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic [J]. Geophys Res Lett, 2010, 37(2): L02802.1-L02802.6.
    [24] WANG Y, WU C C. Current understanding of tropical cyclone structure and intensity changes-A review[J]. Meteorology and Atmospheric Physics, 2004, 87(4): 257-278.
    [25] TAO D, ZHANG F. Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1 534-1 553.
    [26] KAPLAN J, DEMARIA M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin[J]. Wea Forecasting, 2003, 18(6): 1 095-1 105.
    [27] 杨诗琪, 李英, 陈联寿. 西北太平洋热带气旋强度变化的若干特征[J]. 热带气象学报, 2017, 28(5): 666-674.
    [28] RYGLICKI D R, DOYLE J D, HODYSS D, et al. The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part Ⅲ: Outflow-Environment Interaction[J]. Mon Wea Rev, 2019, 147(8): 2 919-2 940.
    [29] 中国气象局热带气旋资料中心. CMA热带气旋最佳路径数据集[DB/OL]. http://tcdata.typhoon.org.cn/.
    [30] DEMARIA M, MAINELLI M, SHAY L K, et al. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS)[J]. Wea Forecasting, 2005, 20(4): 531-543.
    [31] RIOS-BERRIOS R, TORN R D. Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear[J]. Mon Wea Rev, 2017, 145(5): 1 717-1 738.
    [32] VELDEN C S, SEARS J. Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter?[J]. Wea Forecasting, 2014, 29(5): 1 169-1 180.
    [33] 王晓君, 马浩. 新一代中尺度预报模式(WRF)国内应用进展[J]. 地球科学进展, 2011, 26(11): 1 191-1 199.
    [34] ROGERS E, BLACK T, FERRIER B, et al. National oceanic and atmospheric administration changes to the NCEP meso eta analysis and forecast system: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis[J]. NWS Tech Proced Bull, 2001, 488: 1-15.
    [35] BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta-scale model[J]. Mon Wea Rev, 1989, 117(8): 1 872-1 890.
    [36] KAIN, JOHN S. The Kain-Fritsch convective parameterization: An update[J]. J Appl Meteor, 2004, 43(1): 170-181.
    [37] MLAWER, ELI J, STEVEN J T, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res, 1997, 102(D14): 16 663-16 682.
    [38] DUDHIA J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1989, 46(20): 3 077-3 107.
    [39] ek m b. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. J Geophys Res, 2003, 108(D22): 8 851-8 867.
    [40] MUKUL T N, TEWARI M, CHEN F, et al. Implementation and verification of the unified NOAH land surface model in the WRF model (Formerly Paper Number 17.5) [C]//Proceedings of the 20th Conference on Weather Analysis and Forecasting / 16th Conference on Numerical Weather Prediction, Seattle, WA, USA. 2004(14): 11-15.
    [41] DAVIDSON N E, WEBER H C. The BMRC high-resolution tropical cyclone prediction system: TC-LAPS[J]. Mon Wea Rev, 2000, 128(5): 1 245-1 265.
    [42] 王国民, 王诗文, 李建军. 一个人造台风方案及其在移动套网格模式中的应用[J]. 热带气象学报, 1996, 12(1): 9-17.
    [43] 袁炳, 费建芳, 王云峰, 等. 一种非对称台风Bogus方法的数值模拟应用[J]. 海洋通报, 2010, 29(2): 187-193.
    [44] 黄小刚, 费建芳, 陆汉城. 消去分析台风方法的对比研究[J]. 应用气象学报, 2006, 17(1): 81-86.
  • 加载中
图(7)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  20
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2023-06-28
  • 网络出版日期:  2023-12-30
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回