ANALYSIS OF THE CHARACTERISTICS OF A HEAVY PRECIPITATION SUPERCELL STORM BASED ON DUAL POLARIZATION RADAR DATA
-
摘要: 基于山东济宁S波段双偏振多普勒天气雷达探测数据,结合探空和地面实况资料,对2021年6月14日发生在山东单县一带的强降水超级单体双偏振参量特征和微物理特征进行了分析。结果表明:环境整层湿度较大,CAPE较强,0 ℃层高度较高,利于强降水产生,0~6 km具有中等强度垂直风切变,利于超级单体风暴产生与维持。单县超级单体风暴旺盛阶段强度在60~65 dBZ,强中心高度基本位于0 ℃层高度之下,质心偏低。KDP柱的高度与宽度明显大于ZDR柱,强盛宽阔的上升气流将一定浓度、小的液态粒子带至较高高度并持续较长时间。风暴低层左侧一直存在KDP大值区,同时也存在3 °/km以上的KDP高值区,液态粒子浓度较高,最大分钟降水量维持在3 mm以上。风暴低层右侧有明显的入流缺口,有明显的ZDR弧,表现为偏大的液态粒子。环境0 ℃层高度以上较厚的厚度内含有丰富的液态粒子和冰相粒子,丰富的冰相粒子下降到0 ℃层高度之下出现明显融化,在低层强切变的“筛选”作用下,风暴右侧入流与下沉气流结合区以大的液态粒子为主,浓度小,降水强度较弱。风暴左侧低层为高浓度液态粒子,从而产生高强度降水。Abstract: Based on the detection data of an S-band dual polarization Doppler weather radar in Jining, Shandong province, and combined with sounding and surface meteorological observation data, the characteristics of dual polarization parameters and microphysical characteristics of supercells in a heavy rainfall in Shanxian, Shandong province on June 14, 2021 are analyzed. The results are shown as follows. The humidity of the whole layer of the environment is relatively high, CAPE is relatively strong, and the height of the 0 ℃ layer is relatively high, which is conducive to the generation of heavy precipitation. Vertical wind shear at moderate intensity is found at the heights of 0~6 km, which is conducive to the generation and maintenance of the supercell storm. The intensity of the supercell storm in Shanxian is 60~65 dBZ at the peak stage, the height of an intensity center is basically below the 0 ℃ level, and the core of mass is low. The height and width of the KDP column are much larger than that of the ZDR column. A strong and wide updraft brings small liquid particles with some degree of concentration to a higher height for extended time. On the left side of the lower storm level, there are always areas of large KDP values, with some of them more than 3 °/km. The concentration of liquid particles is high, and the maximum precipitation rate is maintained at more than 3 mm per minute. On the right side of the lower layer of the storm, there are an inflow gap and a ZDR arc clearly, shown as relatively large liquid particles. There are abundant liquid- and ice-phase particles in the deep thickness above the height of the 0 ℃ layer in the environment. When abundant ice-phase particles drop below the height of the 0 ℃ layer, they melt by large amount. Under the "screening" effect of a strong shear in the lower layer, the junction area between the inflow and the downdraft on the right side of the storm is dominantly with large liquid particles with low concentration and rainfall intensity is low. The lower layer on the left side of the storm has high concentration of liquid particles, resulting in high-intensity precipitation.
-
Key words:
- dual polarization /
- heavy rainfall /
- characteristics analysis /
- ZDR column /
- KDP column
-
表 1 济宁双偏振多普勒天气雷达的主要技术指标
参数名称 参数值 天线直径 8.5 m 工作模式 双发双收 工作频率 2 920 MHz 波束宽度 0.98 ° 输出功率 ≥650 kW 脉冲宽度 1.58 μs(窄脉冲) 4.70 μs(宽脉冲) 脉冲重复频率 644~1 282 Hz 接收机噪声系数 ≤3.0 dB 动态范围 ≥95 dB 探测范围 460 km,230 km 距离分辨率 250 m 雷达波长 S波段(10 cm) 差分反射率因子ZDR精度 ≤0.2 dB 差分传播相移∅DP精度 ≤3 ° 差分传播相移率KDP精度 ≤0.2 °/km 相关系数CC精度 ≤0.01 表 2 2021年6月14日08:00和20:00徐州探空物理量参数
日期 时次 K/ΔT/℃ BLI/℃ CAPE(CAPE*)/CIN//(J/kg) SHR(0-6)/(0-3)/(m/s) IQ /(g/kg) BWZ/ZH/-10H/-20H/-30H/km 20210614 08 42/23 -3.6 489(4 060*)/0 16.1/10.8 6 640 4.9/5.2/7.2/8.8/10.2 20 41/24 -4.1 1 100/60 19.6/12.5 6 740 5.1/5.3/7.2/9.1/10.2 注:*为订正后的CAPE值。 -
[1] 苏爱芳, 吕晓娜, 崔丽曼, 等. 郑州"7.20"极端暴雨天气的基本观测分析[J]. 暴雨灾害, 2021, 40(5): 445-454. [2] 潘玉洁, 赵坤, 潘益农. 一次强飑线内强降水超级单体风暴的单多普勒雷达分析[J]. 气象学报, 2008, 66(4): 621-636. [3] 毛程燕, 荆思佳, 潘欣, 等. 浙江一次江淮气旋后部强对流暴雨过程诊断研究[J]. 热带气象学报, 2021, 37(4): 530-540. [4] 梁巧倩, 李晓娟, 文秋实, 等. 强弱天气尺度强迫下广东短时强降水时空特征分析[J]. 热带气象学报, 2022, 38(5): 641-650. [5] 杨忠林, 赵坤, 徐坤, 等. 江淮梅雨期极端对流微物理特征的双偏振雷达观测研究[J]. 气象学报, 2019, 77(1): 58-72. [6] 李华实, 王东海, 陆虹, 等. 广西汛期大范围持续性强降水特征与天气学分型研究[J]. 热带气象学报, 2023, 39(2): 242-255. [7] 侯淑梅, 孙敬文, 孙鹏程, 等. 基于加密自动气象观测站和国家气象观测站的山东省极端短时强降水时空分布特征的对比分析[J]. 气象, 2020, 46(2): 200-211. [8] 郭飞燕, 刁秀广, 马艳, 等. 山东一次飑线双偏振结构与地面降水滴谱特征分析[J]. 气象学报, 2023, 81(2): 328-339. [9] 王致君. 偏振气象雷达发展现状及其应用潜力[J]. 高原气象, 2002, 21(5): 495-500. [10] 刘黎平. 双线偏振多普勒天气雷达估测混合区降雨和降雹方法的理论研究[J]. 大气科学, 2002, 26(6): 761-772. [11] KUMJIAN M R. Principles and applications of dual-polarization weather radar. Part Ⅰ: Description of the polarimetric radar variables[J]. J Operational Meter, 2013, 1(19): 226-242. [12] 杨祖祥, 赵森, 李萌萌, 等. 2020年7月22日安徽梅雨期龙卷的双偏振雷达观测分析[J]. 热带气象学报, 2021, 37(Z1): 836-844. [13] 程周杰, 刘宪勋, 朱亚平. 双偏振雷达对一次水凝物相态演变过程的分析[J]. 应用气象学报, 2009, 20(5): 594-601. [14] 吴举秀, 潘佳文, 魏鸣, 等. 不同尺寸冰雹S波段双偏振雷达偏振量特征统计[J]. 热带气象学报, 2022, 38(2): 193-202. [15] KUMJIAN M R, Khain A P, Benmoshe N, et al. The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model[J]. J Appl Meteor Climatol, 2014, 53(7): 1 820-1 843. [16] 杜赛, 刘显通, 孙皓霆, 等. 华南一次典型雷暴过程双偏振雷达参量与闪电活动关系研究[J]. 热带气象学报, 2021, 37(3): 427-438. [17] 刁秀广, 杨传凤, 张骞, 等. 二次长寿命超级单体风暴参数与ZDR柱演变特征分析[J]. 高原气象, 2021, 40(3): 580-589. [18] BRINGI V N, LIU L, KENNEDY P C, et al. Dual multiparameter radar observations of intenseconvective storms: The 24 June 1992 case study[J]. Meteor Atmos Phys, 1996, 59(1): 3-31. [19] HUBBERT J C, WILSON J W, WECKWERTH T M, et al. S-Pol's polarimetric data reveals detailed storm features (and insect behavior) [J]. Bull Amer Meteor Soc, 2018, 99(10): 2 045-2 060. [20] 冯晋勤, 张深寿, 吴陈锋, 等. 双偏振雷达产品在福建强对流天气过程中的应用分析[J]. 气象, 2018, 44(12): 1 565-1 574. [21] 王洪, 吴乃庚, 万齐林, 等. 一次华南超级单体风暴的S波段偏振雷达观测分析[J]. 气象学报, 2018, 76(1): 92-103. [22] 刘陈帅, 张阿思, 陈生. 基于S波段双极化雷达的变分法的定量降水估计算法[J]. 热带气象学报, 2022, 38(3): 422-432. [23] 王睿, 黄燕燕, 伍志方, 等. 基于双偏振雷达资料对南海弱台风降水微物理结构的分析[J]. 热带气象学报, 2022, 38(1): 43-57. [24] 张羽, 胡东明, 李怀宇. 广州双偏振天气雷达在短时强降水中的初步应用[J]. 广东气象, 2017, 39(2): 26-29. [25] 荀爱萍, 张伟, 黄惠镕, 等. 厦门市S波段双偏振雷达测雨效果分析[J]. 气象与环境科学, 2019, 42(4): 103-110. [26] 潘佳文, 蒋璐璐, 魏鸣, 等. 一次强降水超级单体的双偏振雷达观测分析[J]. 气象学报, 2020, 78(1): 86-100. [27] 刁秀广, 张磊, 孟宪贵, 等. 两次强降水风暴双偏振参量特征分析[J]. 海洋气象学报, 2020, 40(3): 27-36. [28] KUMJIAN M R, RYZHKOV A V. Storm-relative helicity revealed from polarimetric radar measurements[J]. J Atmos Sci, 2009, 66(3): 667-685. [29] DAWSON D T, MANSELL E R, JUNG Y, et al. Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail[J]. J Atmos Sci, 2014, 71(1): 276-299. [30] KUMJIAN M R, RYZHKOV A V. Polarimetric signatures in supercell thunderstorms[J]. Journal of Applied Meteorology and Climatology, 2008, 47(7): 1 940-1 961. [31] 刁秀广, 郭飞燕. 2019年8月16日诸城超级单体风暴双偏振参量结构特征分析[J]. 气象学报, 2021, 79(2): 181-195. [32] KUMJIAN M R, Ryzhkov A V, Melnikov V M, et al. Rapid-scan superresolution observations of a cyclic supercell with a dual-polarization WSR-88D[J]. Mon Wea Rev, 2010, 138(10): 3 762-3 786. [33] 潘佳文, 魏鸣, 郭丽君, 等. 闽南地区大冰雹超级单体演变的双偏振特征分析[J]. 气象, 2020, 46(12): 1 608-1 620. [34] 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比[J]. 应用气象学报, 2022, 33(4): 414-428.