EVALUATING THE QUASI-BIENNIAL OSCILLATION IN REANALYSIS DATASETS BASED ON RADIOSONDE DATA
-
摘要: 使用柏林自由大学发布的1980—2020年近赤道站点探空月平均纬向风资料,首先评估ERA5赤道地区平流层中低层纬向风,然后结合ERA5、NCEP1、NCEP2、CFSR、JRA55和MERRA2等六套再分析资料和探空资料,分析了热带平流层准两年振荡(Quasi-Biennial Oscillation,QBO)位相转换时间、周期和振幅的年际变化以及QBO周期和振幅的长期变化趋势。结果表明,ERA5的赤道平流层中低层纬向风存在明显的QBO信号,且ERA5的各层纬向风与探空资料的相关系数都大于0.97,除10 hPa外,均方根误差(RMSE)都小于3;再分析资料与探空资料的QBO位相转换时间的差异主要为超前或滞后1个月,总体上,ERA5和MERRA2与探空资料最接近;再分析资料与探空资料QBO周期以及东、西风位相持续时间都很接近,相关系数高达0.97以上,RMSE几乎都小于1,且几乎都无显著长期变化趋势,但都表现出随时间越来越不稳定的特征,其中ERA5和MERRA2同样与探空资料更接近;探空资料的QBO振幅在10 hPa和50 hPa显著减弱,30 hPa和70 hPa显著增强,但在20 hPa变化趋势不明显,ERA5的QBO振幅变化趋势和年际变化与探空资料最接近,其次是JRA55和MERRA2。Abstract: Using the radiosonde observation dataset produced by Free University of Berlin (FUB) from 1980 to 2020, this study first evaluates the zonal wind in the middle and lower equatorial stratosphere of ERA5. Then this study analyzes the inter-annual variation of QBO phase conversion time, period and amplitude and the long-term variation trend of QBO period and amplitude in combination with six datasets of reanalysis including ERA5, NCEP1, NCEP2, CFSR, JRA55 and MERRA2 and radiosonde data. The results show that the zonal wind in the middle and lower equatorial stratosphere of ERA5 shows QBO signal. The correlation coefficient between ERA5 and radiosonde data in each layer is greater than 0.97 and the root mean square error (RMSE) is less than 3 (except for 10 hPa). The difference of QBO phase conversion time between reanalysis datasets and radiosonde data is mainly one month ahead or behind. Generally, ERA5 and MERRA2 are the closest to radiosonde data. The QBO period and the phase duration of the easterly and westerly from the reanalysis data are very close to those from the radiosonde data. The correlation coefficient is more than 0.97, the RMSE is almost less than 1, and there is almost no significant long-term change trend. However, all of them show the characteristics of becoming more and more unstable with time, ERA5 and MERRA2 are also closer to the radiosonde data. The QBO amplitude from radiosonde data decreases significantly at 10 hPa and 50 hPa while increases significantly at 30 hPa and 70 hPa, but the change trend is not obvious at 20 hPa. The long-term variation trend and inter-annual variation of QBO amplitude from ERA5 are the closest to the radiosonde data, followed by JRA55 and MERRA2.
-
Key words:
- QBO /
- inter-annual variation /
- climate trend /
- reanalysis dataset /
- radiosonde data /
- assessment
-
图 5 同图 4,不过为西风位相向东风位相转换
表 1 再分析资料QBO位相转换时间与探空资料相同的次数
再分析资料和探空资料高度(hPa) 东风位相转西风位相 西风位相转东风位相 10 20 30 50 70 10~70 10 20 30 50 70 10~70 OBS 17 17 16 19 19 88 18 17 16 18 18 87 ERA5 12 17 15 16 14 74 6 14 12 10 7 49 NCEP1 7 13 14 9 5 48 14 9 8 13 5 49 NCEP2 6 9 14 8 4 41 16 8 11 11 5 51 CFSR 6 7 8 7 4 32 10 11 8 5 3 37 JRA55 6 5 14 16 11 52 9 12 13 13 13 60 MERRA2 11 13 14 15 13 66 12 15 13 10 10 61 -
[1] BALDWIN M, GRAY L, DUNKERTON T, et al. The quasi-biennial oscillation[J]. Reviews of Geophysics, 2001, 39(2): 179-229. [2] HOLTON J R, TAN H C. The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 Mb[J]. J Atmos Sci, 1980, 37(10): 2200-2208. [3] ZHANG R H, TIAN W S, WANG T. Role of the quasi-biennial oscillation in the downward extension of stratospheric northern annular mode anomalies[J]. Climate Dyn, 2020, 55(3-4): 595-612. [4] TIAN W, CHIPPERFIELD M P, GRAY L J, et al. Quasi-biennial oscillation and tracer distributions in a coupled chemistry-climate model [J]. J Geophys Res: Atmos, 2006, 111(D20): D20301. [5] YUCJUAN C, BIN Z, HONG Z. The features of ozone quasi-biennial oscillation in tropical stratosphere and its numerical simulation[J]. Adv Atmos Sci, 2002, 19(5): 777-793. [6] ZHENG B, CHEN Y, JIAN J. Quasi-biennial oscillation in NOx and its relation to quasi-biennial oscillation in O3, Part I: Data analysis[J]. Chinese J Atmos Sci, 2003, 27(3): 280-292. [7] ZHENG B, CHEN Y, ZHANG H. Quasi-biennial oscillation in NOx and its relation to quasi-biennial oscillation in O3, Part Ⅱ: Numerical experiment[J]. Chinese J Atmos Sci, 2003, 27(4): 387-398. [8] 陆春晖, 丁一汇. 平流层与对流层相互作用的研究进展[J]. 气象科技进展, 2013, 3(2): 6-21. [9] 郑彬, 施春华. 平流层准两年周期振荡对CH4双峰的影响[J]. 热带气象学报, 2008, 24(2): 111-116. [10] GRAY L J, ANSTEY J A, KAWATANI Y, et al. Surface impacts of the Quasi Biennial Oscillation[J]. Atmos Chem Phys, 2018, 18(11): 8227-8247. [11] ZHENG B, GU D, LIN A, et al. Dynamical mechanism of the stratospheric quasi-biennial oscillation impact on the South China Sea Summer Monsoon[J]. Science in China Series D: Earth Sciences, 2007, 50(9): 1424-1432. [12] 黄荣辉, 陈文, 魏科, 等. 平流层大气动力学及其与对流层大气相互作用的研究: 进展与问题[J]. 大气科学, 2018, 42(3): 463-487. [13] 李崇银, 龙振夏. 准两年振荡及其对东亚大气环流和气候的影响[J]. 大气科学, 1992, (2): 167-176. [14] 刘楚薇, 饶建, 吴志文, 等. ENSO与中国夏季降水的联系: 冬季QBO的调制作用[J]. 热带气象学报, 2019, 35(2): 210-223. [15] 田文寿, 黄金龙, 郄锴, 等. 平流层大气环流的典型系统及变化特征综述[J]. 气象科学, 2020, 40(5): 628-638. [16] 田文寿, 田红瑛, 商林, 等. 热带平流层与对流层之间相互作用的研究进展[J]. 热带气象学报, 2011, 27(5): 765-774. [17] BALDWIN M P, STEPHENSON D B, Thompson D W, et al. Stratospheric memory and skill of extended-range weather forecasts[J]. Science, 2003, 301(5633): 636-640. [18] DUNKERTON, TIMOTHY J. Annual Variation of Deseasonalized Mean Flow Acceleration in the Equatorial Lower Stratosphere[J]. J Meteor Soc Japan, 1990, 68(4): 499-508. [19] GRUZDEV A N, BEZVERKHNY V A. Two regimes of the quasi‐biennial oscillation in the equatorial stratospheric wind[J]. J Geophys Res: Atmos, 2000, 105(D24): 29435-29443. [20] GABIS I, TROSHICHEV O A. QBO cycle identified by changes in height profile of the zonal winds: new regularities[J]. Journal of atmospheric and solar-terrestrial physics, 2005, 67(1-2): 33-44. [21] 韩浦城, 简茂球. 热带平流层纬向风场准两年振荡的年代际变化[J]. 热带气象学报, 2016, 32(4): 458-466. [22] WATANABE S, KAWATANI Y. Sensitivity of the QBO to Mean Tropical Upwelling under a Changing Climate Simulated with an Earth System Model[J]. J Meteor Soc Japan, 2012, 90A: 351-360. [23] KAWATANI Y, HAMILTON K. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling[J]. Nature, 2013, 497: 478-481. [24] SCHIRBER S, MANZINI E, KRISMER T, et al. The quasi-biennial oscillation in a warmer climate: sensitivity to different gravity wave parameterizations[J]. Climate Dyn, 2015, 45(3-4): 825-836. [25] 王子威. 平流层准两年振荡和残余环流的变化趋势及其相互联系[D]. 兰州: 兰州大学, 2016. [26] RAO J, GARFINKEL C I, WHITE I P. Projected strengthening of the extratropical surface impacts of the stratospheric quasi-biennial oscillation[J]. Geophys Res Lett, 2020, 47(20): e2020GL089149. [27] RICHTER J H, ANSTEY J A, BUTCHART N, et al. Progress in simulating the quasi-biennial oscillation in CMIP models[J]. J Geophys Res: Atmos, 2020, 125(8): e2019JD032362. [28] BUTCHART N, ANSTEY J A, KAWATANI Y, et al. QBO Changes in CMIP6 Climate Projections[J]. Geophysical research letters, 2020, 47 (7): e2019GL086903. [29] KAWATANI Y, HAMILTON K, MIYAZAKI K, et al. Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses[J]. Atmos Chem Phys, 2016, 16(11): 6681-6699. [30] RANDEL W, UDELHOFEN P, FLEMING E, et al. The SPARC intercomparison of middle-atmosphere climatologies[J]. J Climate, 2004, 17 (5): 986-1003. [31] PAWSON S, FIORINO M. A comparison of reanalyses in the tropical stratosphere. Part 2: The quasi biennial oscillation[J]. Climate Dyn, 1998, 14(9): 645-658. [32] YOO J M, WON Y I, JEONG M J, et al. Intensity of climate variability derived from the satellite and MERRA reanalysis temperatures: AO, ENSO, and QBO[J]. Journal of atmospheric and solar-terrestrial physics, 2013, 95-96: 15-27. [33] COY L, WARGAN K, MOLOD A M, et al. Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2[J]. J Climate, 2016, 29(14): 5339-5354. [34] DAS S S, UMA K, BINEESHA V, et al. Four-decadal climatological intercomparison of rocketsonde and radiosonde with different reanalysis data: results from Thumba Equatorial Station[J]. Quart J Royal Meteor Soc, 2016, 142(694): 91-101. [35] LONG C S, FUJIWARA M, DAVIS S, et al. Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP)[J]. Atmos Chem Phys, 2017, 17(23): 14593-14629. [36] RAO J, YU Y, GUO D, et al. Evaluating the Brewer-Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses[J]. Earth and Planetary Physics, 2019, 3(2): 166-181. [37] FUJIWARA M, MANNEY G L, GRAY L J, et al. SPARC Reanalysis Intercomparison Project (S-RIP) Final Report[R]. SPARC Office, 2022. [38] 梁维亮, 简茂球, 乔云亭. QBO与南海夏季风爆发的关系[J]. 热带气象学报, 2012, 28(2): 237-242. [39] SON S-W, LIM Y, YOO C, et al. Stratospheric control of the Madden-Julian oscillation[J]. J Climate, 2017, 30(6): 1909-1922. [40] HUANGFU J L, TANG Y L, MA T J, et al. Influence of the QBO on tropical convection and its impact on tropical cyclone activity over the western North Pacific[J]. Climate Dyn, 2021, 57(3-4): 657-669.