ERROR PROPAGATION CHARACTERISTECS OF WRF/WRF-HYDRO METEOROLOGICAL-HYDROLOGICAL COUPLING MODEL: TAKING THE RUNOFF FORECASTING IN ZHANGHE RIVER BASIN AS AN EXAMPLE
-
摘要: 在中小流域,有效的洪水预见期对调度决策、防洪减灾尤其重要。以漳河流域为研究区域,基于WRF模式和WRF-Hydro水文模型建立WRF/WRF-Hydro气象-水文耦合模式,探讨不同预见期WRF模式预报降雨对径流预报效果的影响,以及气象-水文模型之间的误差传递特征。(1)不同预见期下WRF模式预报的降雨峰值随预见期增长偏差越大。预见期为06 h和12 h时较预见期较长时(24 h、48 h),降雨量和峰值出现时间预报误差较小,降雨落区预报明显较好。(2)基于WRF/WRF-Hydro气象-水文耦合的径流预报结果表明,预见期越长洪峰流量及径流总量偏差越大。06 h和12 h预见期下的径流预报结果都较好,平均相关系数、平均纳什系数分别提高0.15、0.69。(3)模式之间的误差传递会因预见期长短和降雨预报效果有一定的差异。预见期为06 h和12 h时,数值天气预报误差传递给水文模型后有放大、有缩小。预见期较长时(24 h、48 h)随预见期加长,水文模型放大数值天气预报误差的程度越大,但是通过定量分析发现降雨误差和径流误差之间没有明显的线性关系。Abstract: Effective flood forecast periods are important for scheduling decisions making, flood prevention, and disaster mitigation in small and medium river basins. In this study, a WRF/WRF-Hydro meteorologicalhydrological coupling model is established based on the WRF model and the WRF-Hydro model to explore the influence of WRF precipitation on runoff forecasting in Zhanghe River Basin under different forecast periods and the propagation of uncertainty from meteorological model to hydrological model. The results show that: (1) The more extended the forecast period, the more serious the overestimation of the rainfall peak predicted by the WRF model under different forecast periods. Under 06 h and 12 h forecast periods, the forecast error of rainfall amount and peak precipitation time is smaller, and the forecast of rainfall area is obviously better than that under longer forecast periods (24 h and 48 h). (2) The runoff forecast results of the meteorological-hydrological coupling model show that the longer the forecast period, the more serious the overestimation of runoff peak. The runoff forecast results under 06 h and 12 h forecast periods are better, and the average correlation coefficient and average Nash coefficient increase by 0.15 and 0.69 respectively. (3) The error propagation characteristics between models are different due to the length of forecast period and the effect of rainfall forecast. Under 06 h and 12 h forecast periods, the error of numerical weather forecast is magnified and reduced after propagation to the hydrological model. Under longer forecast period (24 h and 48 h), the longer the forecast period, the greater the hydrological model amplifies the error of numerical weather forecast.
-
表 1 漳河流域2015—2018年5场洪水过程
洪水编号 洪水过程(UTC) 峰值流量(m3/s) 累计面雨量(mm) 20150630 063000—070106 456 35.50 20150714 071412—071612 507 50.76 20160630 063000—070300 1 340 62.41 20170708 070806—071006 856 62.34 20180704 070400—070700 384 38.84 表 2 WRF-Hydro模型的主要参数化方案
WRF-HydroV5.0.3 设置 陆面模型 Noah-MP模式 壤中及地表汇流 最大坡降法 地下水模型 指数型出流模型 河道汇流 基于网格点的扩散波方法 陆面模型积分步长 1 h 汇流模型积分步长 6 s 表 3 率定及验证场次逐小时模拟径流的评估结果
洪水参数 洪水编号 RR 流量相对误差/% NSE ΔT/h |PE| |TE| 率定 20150630 0.88 14.61 14.28 0.75 0 h 20150714 0.94 18.16 11.07 0.87 0 h 20160630 0.91 17.75 16.71 0.78 0 h 验证 20170708 0.92 14.60 11.52 0.83 0 h 20180704 0.88 15.26 6.94 0.77 1 h -
[1] VITERBO F, von HARDENBERG J, PROVENZALE A, et al. High-resolution simulations of the 2010 Pakistan flood event: Sensitivity to parameterizations and initialization time[J]. J Hydrometeorol, 2016, 17(4): 1147-1167. [2] 温垭惠, 李致家, 孙明坤, 等. 降雨输入对实时洪水预报精度与预见期的影响[J]. 湖泊科学, 2019, 31(1): 39-51. [3] 包红军, 曹勇, 曹爽, 等. 基于短时临近降水集合预报的中小河流洪水预报研究[J]. 河海大学学报(自然科学版), 2021, 49(3): 197-203. [4] SEO B C, QUINTERO F, KRAIEWSKI W F. High-resolution QPF uncertainty and its implications for flood prediction: A case study for the eastern Iowa flood of 2016[J]. J Hydrometeorol, 2018, 19(8): 1289-1304. [5] LI L, GOCHIS D J, SOBOLOWKSI S, et al. Evaluating the present annual water budget of a Himalayan headwater river basin using a highresolution atmosphere-hydrology mode[J]. J Geophys Res, 2017, 122(9): 4786-4807. [6] GHIMIRE G R, KRAJEWSKI W F, QUINTERO F, et al. Scale-dependent value of QPF for real-time streamflow forecasting[J]. J Hydrometeorol, 2021, 22 (7): 1931-1947. [7] PAL S, DOMINGUEZ F, DILLON E, et al. Hydrometeorological observations and modeling of an extreme rainfall event using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina[J]. J Hydrometeorol, 2020, 22(2): 331-351. [8] GU T, CHEN Y, GAO Y, et al. Improved streamflow forecast in a small-medium sized river basin with coupled WRF and WRF-Hydro: Effects of radar data assimilation[J]. Remote Sensing, 2021, 13(16): 32-51. [9] CHEN Y B, LI J, WANG H Y, et al. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model[J]. Hydrology and Earth System Sciences, 2017, 21(2): 1279-1294. [10] LAGASIO M, SILVESTRO F, CAMPO L, et al. Predictive capability of a high-resolution hydrometeorological forecasting framework coupling WRF cycling 3DVAR and continuum[J]. J Hydrometeorol, 2019, 20(7): 1307-1337. [11] CHEN Y B, LI J, WANG H Y, et al. Large-watershed flood forecasting with high-resolution distributed hydrological model[J]. Hydrology and Earth System Sciences, 2017, 21(2): 735-749. [12] LI L, PONTOPPIDAN M, SOBOLOWSKI S, et al. The impact of initial conditions on convection-permitting simulations of a flood event over complex mountainous terrain[J]. Hydrology and Earth System Sciences, 2020, 24(2): 771-791. [13] YAO C, YE J Y, HE Z X, et al. Evaluation of flood prediction capability of the distributed Grid ‐ Xinanjiang model driven by weather research and forecasting precipitation[J]. Journal of Flood Risk Management, 2019, 12(S1): e12544. [14] MA Y, CHANDRASEKAR V, CHEN H, et al. Quantifying the potential of AQPI gap-filling radar network for streamflow simulation through a WRF-Hydro experiment[J]. J Hydrometeorol, 2021, 22(7): 1869-1882. [15] GOCHIS D J, BARLARGE M, DUGGER A, et al. The WRF-Hydro modeling system technical description(Version 5.0)[R]. NCAR Technical Note, 2018. [16] LIU Y, LIU J, LI C. Parameter sensitivity analysis of the WRF-Hydro Modeling System for streamflow simulation: A case study in semihumid and semi-arid catchments of northern China[J]. Asia-Pacific J Atmos Sci, 2021, 57(3): 451-466. [17] 孙明坤, 李致家, 刘志雨, 等. WRF-Hydro模型与新安江模型在陈河流域的应用对比[J]. 湖泊科学, 2020, 32(3): 850-864. [18] 刘洪波, 菅浩然, 孙明坤. WRF-Hydro模型在典型中小流域的日径流模拟研究[J]. 水文, 2021, 41(4): 48-55. [19] GALANAKI E, LAGOUVARDOS K, KOTRONI V, et al. Implementation of WRF-Hydro at two drainage basins in the region of Attica, Greece, for operational flood forecasting[J]. Natural Hazards and Earth System Sciences, 2021, 21(7): 1983-2000. [20] CHAO L, ZHANG K, YANG Z L, et al. Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method[J]. J Hydrology, 2021, 592: 125814. [21] ZHANG J Q, LIN P R, GAO S, et al. Understanding the re-infiltration process to simulating streamflow in North Central Texas using the WRF-hydro modeling system[J]. J Hydrology, 2020, 587(1): 1-14. [22] 吴雨晴. 基于WRF-Hydro模式的气象-水文耦合径流预报研究[D]. 南京: 南京信息工程大学, 2021. [23] SHEN Y, ZHAO P, PAN Y, et al. A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. J Geophysi Res: Atmos, 2014, 119(6): 3063-3075. [24] 张利平, 张晓琳, 徐霞, 等. 基于水文模型的雷达监测降雨量误差传递研究[J]. 水文, 2012, 32(1): 13-17. [25] GHIMIRE G R, KRAJEWSKI W F, AYALEW T B, et al. Hydrologic investigations of radar-rainfall error propagation to rainfall-runoff model hydrographs[J]. Advances in Water Resources, 2022, 161: 104145.