Analysis of Storm-scale Ensemble Forecasts for an Extreme Rainfall Event Associated with a Monsoon Trough on 30 August 2018 in Guangdong
-
摘要: 受季风槽影响,2018年8月30—31日华南地区出现一次极端暴雨过程,单日站点累计降水量达1 056.7 mm,刷新了广东有历史纪录以来新的极值。对于此次极端降水事件,常用的业务模式包括欧洲中期天气预报中心全球模式(ECMWF)、日本气象厅谱模式(JMA)和中国气象局广东快速更新同化数值预报系统(CMA-GD),都低估了降水强度。利用深圳市气象局业务对流尺度集合预报系统分析了此次特大暴雨过程,结果表明:对流尺度集合预报系统对本次特大暴雨过程具有比较好的预报能力,概率匹配平均最大雨量达348.7 mm·(24 h)-1,集合平均的强降水中心和观测基本一致,观测极值附近区域发生大暴雨(≥150 mm)概率最大值达到80%。选取了较“好”和较“差”集合成员预报进行对比分析,发现较“好”成员预报的强降水中心位置和观测基本一致,而较“差”成员预报的降水中心位置则偏向福建地区。较“好”成员预报出莲花山南侧地面中尺度辐合线较长时间的维持和缓慢移动,导致强降水雨团在莲花山脉附近不断地触发和维持,同时地形的阻挡作用使得对流系统在地形附近区域持续维持,造成了罕见的特大暴雨;而较“差”成员辐合区位于莲花山以北,对流形成后向东、向北移动,最终导致强降水预报位置偏向福建地区。Abstract: On 30 August 2018, an extreme rainfall event occurred in Guangdong Province with a record-breaking 24 h precipitation of 1056.7 mm. Operational forecasts from the ECMWF, JMA and CMA-GD greatly underestimated the precipitation amount. In this study, a storm-scale ensemble forecast system (SSEF) at 4 km grid spacing produced by the Shenzhen Meteorological Bureau was used to study this extreme event. The SSEF produced a high probability of occurrence for this rainfall event. The maximum ensemble probability of precipitation exceeding 150 mm day-1 was over 80%. The predicted maximum probability-matched mean rain rate was 348.7 mm day-1, and the predicted ensemble mean heavy rainfall center matched the observation well. To understand the main causes of forecast biases, the present study also analyzed the members of relatively good and bad performance in predicting the location of heavy rainfall. Close examination showed that the surface mesoscale convergence line predicted by the good member was located on the south side of the Lianhua Mountains. It moved slowly and persisted for a long time due to terrain blocking, causing heavy rainfall near the mountains. In contrast, the surface convergence line of the bad member was located north of the Lianhua Mountains. Without terrain blocking, the precipitation system moved towards the northeast, resulting in the mislocation of the forecasted heavy rainfall center.
-
Key words:
- monsoon trough /
- extreme rainfall /
- ensemble forecasts /
- surface convergence line
-
表 1 深圳对流尺度集合预报系统内层区域(4 km)不同模式成员的配置
集合成员序号 微物理参数化方案 边界层参数化方案 陆面模式 M00 Thompson MYJ方案 Noah M01 Morrison YSU方案 RUC M02 Morrison MYJ方案 Noah M03 Thompson ACM2方案 Noah M04 Morrison ACM2方案 RUC M05 WSM6 MYNN方案 Noah M06 WDM6 MYJ方案 RUC M07 Thompson YSU方案 Noah M08 WDM6 QNSE方案 Noah M09 Thompson MYNN方案 Noah -
[1] 黄忠, 张东, 林良勋. 广东后汛期季风槽暴雨天气形势特征分析[J]. 气象, 2005, 31(9): 19-24. [2] 蒙伟光, 张艳霞, 袁金南, 等. 华南沿海2011年7月15-18日持续暴雨过程中的季风槽与中尺度对流系统相互作用[J]. 气象学报, 2014, 72(3): 508-525. [3] 纪忠萍, 谷德军, 孙广凤, 等. 2011年夏季广东季风槽暴雨与准双周振荡[J]. 热带气象学报, 2014, 30(3): 432-442. [4] 陈见, 梁维亮, 高安宁, 等. 华南季风槽暴雨特征分析[J]. 热带气象学报, 2015, 31(4): 536-548 [5] 汪瑛, 胡胜, 涂静, 等. 2016-2020年广东省定量降水预报检验评估[J]. 热带气象学报, 2021, 37(2): 154-165. [6] 杜钧, 陈静. 单一值预报向概率预报转变的基础: 谈谈集合预报及其带来的变革[J]. 气象, 2010, 36(11): 1-11 [7] 杜钧, 李俊. 集合预报方法在暴雨研究和预报中的应用[J]. 气象科技进展, 2014, 4(5): 6-20. [8] ZHU K, XUE M. Evaluation of WRF-based Convection-Permitting Multi-Physics Ensemble Forecasts over China for the July 21, 2012 Beijing Extreme Rainfall Event[J]. Adv Atmos Sci, 2016, 33: 1 240-1 258. [9] MOLTENI F, BUIZZA R, PALMER T N, et al. The ECMWF ensemble prediction system: Methodology and validation[J]. Quart J Roy Meteor Soc, 1996, 122: 73-119. [10] TOHT Z, KALANY Y. Ensemble forecasting at NMC: the generation of perturbations[J]. Bull Amer Meteor Soc, 1993, 74: 2 317-2 330. [11] KONG F, XUE M, THOMAS K W, et al. A realtime storm scale ensemble forecast system: 2009 spring experiment[C]. 23th Conference on several local storm and 19th conference on numerical weather prediction. Amer. Metor. Soc. Omaba Nebraska. 2009. [12] 孔凡铀. 雷暴尺度天气集合数值预报研究[J]. 气象科技进展, 2018, 8(3): 53-60. [13] XUE M, KONG F, THOMAS K W, et al. CAPS realtime storm scale ensemble and high resolution forecasts for the NOAA hazardous weather testbed 2010 spring experiment[C]. 25th Conference on several local storm. Amer. Metor. Soc. Denver, Colordo. 2010. [14] CLARK A J, WEISS S J, KAIN J S, et al. An overview of the 2010 hazardous weather testbed experimental forecasts program spring experiment[J]. Bull Amer Meteor Soc, 2012, 93(1): 55-74. [15] 陈静, 薛纪善, 颜宏. 华南中尺度暴雨数值预报的不确定性与集合预报试验[J]. 气象学报, 2003, 61(4): 432-446. [16] 庄潇然, 闵锦忠, 蔡沅辰, 等. 不同大尺度强迫条件下考虑初始场与侧边界条件不确定性的对流尺度集合预报试验[J]. 气象学报, 2016, 74(2): 244-258. [17] 庄潇然, 闵锦忠, 武天杰, 等. 风暴尺度集合预报中不同初始扰动的多尺度发展特征研究[J]. 高原气象, 2017, 36(3): 811-825. [18] 马申佳, 陈超辉, 何宏让, 等. 基于BGM的对流尺度集合预报试验及检验[J]. 高原气象, 2018, 37(2): 495-504. [19] ZHANG X. Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: preliminary results during SCMREX[J]. Quarterly Journal of the Royal Meteorological Society, 2018 144(717): 2 842-2 862. [20] ZHANG X. Impacts of different perturbation methods on multiscale interactions between multisource perturbations for convection-permitting ensemble forecasting during SCMREX[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(741), 3 899-3 921. [21] DU J, MULLEN S L, SANDER S L. Short-range ensemble forecasting of quantitative precipitation[J]. Mon Wea Rev, 1997, 125(10): 2 427-2 459. [22] 高峰, 闵锦忠, 孔凡铀, 等. 风暴尺度集合成员数对预报技巧的影响[J]. 南京气象学院学报, 2009, 32(2): 215-221. [23] 陈训来, 魏晓琳, 谢坤, 等. 雷暴尺度集合预报系统在深圳强对流春季试验中的应用[C]. 第33届中国气象学会年会, S8数值模式产品应用与评估. 西安, 2016. [24] 江崟, 陈训来, 朱江山, 等. 深圳对流尺度集合预报系统在华南暴雨中的应用研究[J]. 气象科技进展, 2019, 9(3): 118-125. [25] 王德立, 黄辉军, 陈训来, 等. 深圳对流尺度集合预报系统对台风降水预报的检验评估[J]. 热带气象学报, 2020, 36(6): 759-771. [26] 沈艳, 潘旸, 宇婧婧, 等. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 2013, 36(1): 37-46. [27] 潘旸, 谷军霞, 徐宾, 等. 多源降水数据融合研究及应用进展[J]. 气象科技进展, 2018, 8(1): 143-152. [28] EBERT E E. Ability of a poor man's ensemble to predict the probability and distribution of precipitation[J]. Mon Wea Rev, 2001, 129(10): 2 461-2 479. [29] 刘琳, 陈静, 程龙, 等. 基于集合预报的中国极端强降水预报方法研究[J]. 气象学报, 2013, 71(5): 853-866. [30] 陈博宇, 代刊, 郭云谦. 2013年汛期ECMWF集合统计量产品的降水预报检验与分析[J]. 暴雨灾害, 2015, 34(1): 64-73. [31] 郭姿佑, 伍志方, 蔡景就, 等. "18.8"广东季风低压持续性特大暴雨水汽输送特征[J]. 暴雨灾害, 2019, 38(6): 587-596. [32] 蔡景就, 伍志方, 陈晓庆, 等. "18.8"广东季风低压持续性特大暴雨成因分析[J]. 暴雨灾害, 2019, 38(6): 576-586. [33] 李明华, 陈芳丽, 李娇娇, 等. 惠东高潭三次极端强降水过程成因对比分析[J]. 热带气象学报, 2020, 36(5): 616-625. [34] 荣艳敏, 盛春岩, 范苏丹, 等. 概率匹配平均法在山东强降水预报中的应用[J]. 海洋气象学报, 2017, 37(3): 95-101. [35] 李俊, 杜钧, 陈超君. 降水偏差订正的频率(或面积)匹配方法介绍和分析[J]. 气象, 2014, 40(5): 580-588. [36] 林良勋, 冯业荣, 黄忠, 等. 广东省天气预报技术手册[M]. 北京: 气象出版社, 2006: 106-150.