Environmental Characteristics During the Rapid Intensification of Super Cyclonic Storm Chapala (2015) over the Arabian Sea
-
摘要: 利用美国联合台风警报中心(JTWC)发布的北印度洋热带气旋数据、NOAA 0.25 °×0.25 °逐日OISST资料以及ERA5提供的0.25 °×0.25 °逐小时的再分析资料分析了阿拉伯海超级气旋风暴“查帕拉”(2015)快速加强过程中的环境场特征,结果表明:较常年平均偏暖3.0~3.5 ℃的暖水区,为“查帕拉”的快速加强提供了水汽和能量条件;“查帕拉”北侧的副热带西风急流和南侧的高空出流通道的建立是其快速加强的重要高空强迫条件,高层辐散风的增强促进质量流出形成强上升运动,这也伴随着旋转风动能的快速增长;在“查帕拉”快速增强时段,高层150 hPa以上存在显著的正位涡异常,高层的正位涡异常能够调整引起低层气旋性环流加强,同时中层400 hPa有显著的正位涡平流输入,正涡度在垂直方向快速增长,300 hPa附近显著增暖,内核区的垂直对流运动达到最强。Abstract: Based on the best-track data from the Joint Typhoon Warning Center, ERA5 0.25 ° × 0.25 ° reanalysis data, and NOAA 0.25 ° × 0.25 ° daily Optimum Interpolation Sea Surface Temperature data, a study was conducted to investigate the environmental characteristics during the rapid intensification of super cyclonic storm Chapala (2015) over the Arabian Sea. The results showed that the warm pool, which was 3.0—3.5 ℃ warmer than the annual average, provided water vapor and energy for the storm' s rapid intensification. The establishment of the subtropical westerly jet on the north side of Chapala and the upperlevel outflow channel on the south side were important upper-level forcing conditions for its rapid intensification. The enhancement of high-level divergent wind promoted the mass outflow to form a strong upward motion, accompanied by the rapid growth of rotational wind energy. There was a significant positive potential vorticity anomaly above 150 hPa during the rapid intensification of Chapala, bringing about the strengthening of cyclonic circulation at the lower level. At the same time, there was a significant positive potential vorticity advection inflow at 400 hPa. Thus, positive vorticity increased rapidly in the vertical direction. There was a warm core near 300 hPa, with the vertical convective motion in the inner core reaching the maximum.
-
Key words:
- Chapala /
- rapid intensification /
- upper-level outflow /
- vorticity /
- potential vorticity
-
表 1 北印度洋热带气旋等级划分标准
热带气旋等级 底层中心附近最大平均风速(3分钟平均风) (m·s-1) (kt) 低压(Depression) 8.0~13.8 17~27 深低压(Deep Depression) 13.9~17.1 28~33 气旋风暴(Cyclonic Storm) 17.2~24.4 34~47 强气旋风暴(Severe Cyclonic Storm) 24.5~32.6 48~63 强气旋风暴(Severe Cyclonic Storm) 24.5~32.6 48~63 特强气旋风暴(Very Severe Cyclonic Storm) 32.7~45.8 64~89 极强气旋风暴(Extremely Severe Cyclonic Storm) 45.9~61.5 90~119 超级气旋风暴(Super Cyclonic Storm) ≥61.6 ≥120 -
[1] PATTANAIK D R. Variability of oceanic and atmospheric conditions during active and inactive periods of storms over the Indian region[J]. International Journal of Climatology, 2005, 25(11): 1 523-1 530. [2] CAMARGO S J, EMANUEL K A, SOBEL A H. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis[J]. J Climate, 2007, 20(19): 4 819-4 834. [3] EVAN A T, CAMARGO S J. A Climatology of Arabian Sea Cyclonic Storms[J]. J Climate, 2011, 24(1): 140-158. [4] FAN X T, LI Y, LV A M, et al. Statistical and comparative analysis of tropical cyclone activity over the Arabian Sea and Bay of Bengal (1977-2018) [J]. J Trop Meteor, 2020, 26(4): 441-452. [5] GRAY W M. Global view of the origin of tropical disturbances and storms[J]. Mon Wea Rev, 1968, 96(10): 669-700. [6] LI Z, YU W, LI T, et al. Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle[J]. J Climate, 2013, 26(3): 1 033-1 046. [7] YANASE W, TANIGUCHI H, SATOH M. The genesis of Tropical Cyclone Nargis (2008): Environmental modulation and numerical predictability[J]. J Meteor Soc Japan, 2010, 88(3): 497-519. [8] LIN I I, CHEN C H, PUN I F, et al. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis(2008) [J]. Geophy Res Lett, 2009, 36(3): 151-157. [9] MANEESHA K, MURTY V S N, RAVICHANDRAN M, et al. Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila[J]. Progress in Oceanography, 2012, 106: 49-61. [10] 张霏, 吴立广, 任福民, 等. 孟加拉湾和阿拉伯海热带气旋活动双峰型差异及可能成因[J]. 热带气象学报, 2016, 32(3): 399-406. [11] WANG B, YANG Y, DING Q H, et al. Climate control of the global tropical storm days (1965-2008) [J]. Geophy Res Lett, 2010, 37: L07704. [12] EMANUEL K A, SOLOMON S. Influence of tropical tropopause layer cooling on Atlantic hurricane activity[J]. J Climate, 2013, 26(7): 2 288-2 301. [13] CAMARGO S J. Global and regional aspects of tropical cyclone activity in the CMIP5 models[J]. J Climate, 2013, 26(24): 9 880-9 902. [14] DOWNS A, KIEU C. A Look at the relationship between the large-scale tropospheric static stability and the tropical cyclone maximum intensity[J]. J Climate, 2019, 33(3): 959-975. [15] SHU S, MING J, CHI P. Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the Western North Pacific basin[J]. Weather and Forecasting, 2012, 27(2): 411-423. [16] MURAKAMI H, LI T, HSU P C. Contributing Factors to the Recent High Level of Accumulated Cyclone Energy (ACE) and Power Dissipation Index (PDI) in the North Atlantic[J]. J Climate, 2014, 27(8): 3 023-3 034. [17] BRACKEN W, BOSART L. The role of synopticscale flow during tropical cyclogenesis over the North Atlantic Ocean[J]. Mon Wea Rev, 2000, 128(2): 353-376. [18] DAVIS C, BOSART L. The formation of Hurricane Humberto (2001): The importance of extratropical precursors[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(619): 2 055-2 085. [19] MCBRIDE J L, ZEHR R. Observational analysis of tropical cyclone formation. Part Ⅱ: Comparison of non-developing versus developing systems[J]. J Atmos Sci, 1981, 38(3): 1 132-1 151. [20] DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. J Atmos Sci, 1996, 53(14): 2 076-2 088. [21] ZEHR R M. Environmental vertical wind shear with Hurricane Bertha (1996) [J]. Weather and Forecasting, 2003, 18(2): 345-356. [22] PATERSON L A, HANSTRUM B N, DAVIDSON N E, et al. Influence of environmental vertical wind shear on the intensity of hurricanestrength tropical cyclones in the Australian region[J]. Mon Wea Rev, 2005, 133(12): 3 644-3 660. [23] ZENG Z, WANG Y, CHEN L S. A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic[J]. Geophysical Research Letters, 2010, 37(2): 1 495-1 500. [24] WANG Y Q, RAO Y, TAN Z M, et al. A Statistical Analysis of the Effects of Vertical Wind Shear on Tropical Cyclone Intensity Change over the Western North Pacific[J]. Mon Wea Rev, 2015, 143(9): 3 434-3 453. [25] HOUZE J R. Clouds in tropical cyclones[J]. Mon Wea Rev, 2010, 138(2): 293-344. [26] BRAUN S A, SIPPEL J A, NOLAN D S. The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow [J]. J Atmos Sci, 2012, 69(1): 236-257. [27] LI Y, GUO L, XU Y, et al. Impacts of upper-level cold vortex on the rapid change of intensity and motion of Typhoon Meranti (2010)[J]. J Trop Meteor, 2012, 18(2): 207-219. [28] SHIEH O H, FIORINO M, KUCAS M E, et al. Extreme rapid intensification of typhoon vicente (2012) in the south china sea[J]. Weather and Forecasting, 2013, 28(6): 1 578-1 587. [29] WEI N, LI Y, ZHANG D L, et al. A Statistical Analysis of the Relationship between Upper-Tropospheric Cold Low and Tropical Cyclone Track and Intensity Change over the Western North Pacific[J]. Mon Wea Rev, 2016, 144(5): 1 805-1 822. [30] EVAN A T, KOSSIN J P, RAMANATHAN V. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols[J]. Nature, 2011, 479(7371): 94-97. [31] LEE C S, EDSON R, GRAY W M. Some large-scale characteristics associated with tropical cyclone development in the North Indian Ocean during FGGE[J]. Mon Wea Rev, 1989, 117(2): 407-426. [32] RYGLICKI D R, DOYLE J D, HODYSS D, et al. The Unexpected Rapid Intensification of Tropical Cyclones In Moderate Vertical Wind Shear. Part Ⅲ: Outflow-Environment Interaction[J]. Mon Wea Rev, 2019, 147(8): 2 919-2 940. [33] KAPLAN J, DEMARIA M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin[J]. Weather and Forecasting, 2003, 18(6): 1 093-1 108. [34] UCCELLINI L W, KOCIN P J. The Interaction of Jet Streak Circulations during Heavy Snow Events along the East Coast of the UnitedStates[J]. Weather and Forecasting, 2009, 2(4): 289-309. [35] 张玲, 许映龙, 黄奕武. 1330号台风海燕强烈发展和快速移动原因分析[J]. 气象, 2014, 40(12): 1464-1480. [36] 程正泉, 林良勋, 杨国杰, 等. 超强台风威马逊快速增强及大尺度环流特征[J]. 应用气象学报, 2017, 28(3): 318-326. [37] EVANS J L. Sensitivity of tropical cyclone intensity to sea surface temperature[J]. J Climate, 1993, 6(6): 1 133-1 140. [38] ALI M M, JAGADEESH P S V, JAIN S. Effects of eddies on Bay of Bengal cyclone intensity[J]. Eos Trans Ame Geophys Union, 2007, 8 (8): 93-95. [39] OROPEZA F, RAGA G B. Rapid deepening of tropical cyclones in the northeastern Tropical Pacific: The relationship with oceanic eddies [J]. Atmósfera, 2015, 28(1): 27-42. [40] LIN I I, PUN I F, LIEN C C, et al. "Category ‐ 6" supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming[J]. Geophysical Research Letters, 2014, 41(23): 8 547-8 553. [41] SUN J, ZUO J C, LING Z, et al. Role of ocean upper layer warm water in the rapid intensification of tropical cyclones: A case study of typhoon Rammasun (1409) [J]. Acta Oceanologica Sinica, 2016, 35(3): 63-68 [42] 杨薇, 蔡亲波, 李勋, 等. 海洋暖涡对"威马逊"(2014)影响的观测和模拟研究[J]. 自然灾害学报, 2019, 28(1): 165-174. [43] GAO S, ZHAI S, CHIU L S, et al. Satellite air-sea enthalpy flux and intensity change of tropical cyclones over the western North Pacific[J]. Journal of Applied Meteorology and Climatology, 2015, 55(2): 425-444. [44] 李英, 陈联寿, 徐祥德, 2005. 水汽输送影响登陆热带气旋维持和降水的数值试验[J]. 大气科学, 29 (1): 91-98. [45] 高拴柱, 吕心艳, 王海平, 等. 热带气旋莫兰蒂(1010) 强度的观测研究和增强条件的诊断分析[J]. 气象, 2012, 38(7): 834-840. [46] 郝丽萍, 邓佳, 李国平, 等. 一次西南涡持续暴雨的GPS大气水汽总量特征[J]. 应用气象学报, 2013, 24(2): 230-239. [47] 程正泉, 陈联寿, 李英. 登陆热带气旋海马(0421)变性加强的诊断研究[J]. 气象学报, 2012, 70 (4): 628-641. [48] MOLINARI J, SKUBIS S, VOLLARO D. External influences on hurricane intensity. Part Ⅲ: Potential vorticity structure[J]. J Atmos Sci, 1995, 52(20): 3 593-3 606. [49] HANLEY D, MOLINARI J, KEYSER D. A composite study of the interactions between tropical cyclones and upper-tropospheric troughs[J]. Mon Wea Rev, 2001, 129(10): 2 570-2 584. [50] RAPPIN E D, MORGA M C, TRIPOLI G J. The impact of outflow environment on tropical cyclone intensification and structure[J]. J Atmos Sci, 2011, 68(2): 177-194. [51] DITCHEK S D, MOLINARI J, VOLLARO D. Tropical Cyclone Outflow-Layer Structure and Balanced Response to Eddy Forcings[J]. J Atmos Sci, 2016, 74(1): 133-149. [52] KOMAROMI W A, DOYLEV J D. On the dynamics of tropical cyclone and trough interactions[J]. Journal of Atmospheric Sciences, 2018, 75(8): 2 687-2 709. [53] 邓涤菲, 周玉淑. 无旋转风分量在台风"桑美"急剧增强和急剧减弱过程中的分析和应用[J]. 高原气象, 2011, 30(02): 406-415. [54] 徐亚钦, 夏园锋, 翟国庆, 等". 苏拉" 台前强螺旋云带辐合特征分析[J]. 气象, 2018, 44(10): 1 275-1 285. [55] EMANUEL K, DESAUTELS C, HOLLOWAY C, et al. Environmental control of tropical cyclone intensity[J]. J Atmos Sci, 2004, 61(7): 843-858. [56] TORY K, DAVIDSON N, MONTGOMERY M. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part Ⅲ: Diagnosis of developing and nondeveloping storms[J]. J Atmos Sci, 2007, 64(9): 3 195-3 213. [57] ERTEL H. Einneuer hydrodynamischer Wirbelsatz[J]. Meteor Zeitschrift, 1942, 59: 277-281. [58] HOSKINS B J. The role of potential vorticity in symmetric stability and instability[J]. Quarterly Journal of the Royal Meteorological Society, 1974, 100: 480-482. [59] MONTGOMERY M T, FARRELL B F. Tropical Cyclone Formation[J]. Journal of the Atmospheric Sciences, 1993, 50(2): 285-308. [60] LEROUX M D, PLU M, BARBARY D, et al. Dynamical and physical processes leading to tropical cyclone intensification under upperlevel trough forcing[J]. J Atmos Sci, 2013, 70(8): 2 547-2 565. [61] MONTGOMERY M T, KALLENBACH R J. A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(538): 435-465. [62] KOSSIN J, SCHUBERT W H. Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices[J]. J Atmos Sci, 2001, 58(15): 1 079-1 090.