Modulation of Intraseasonal Oscillation Moisture Budget on Persistent Extreme Precipitation Intensity over the Middle and Lower Reaches of the Yangtze River
-
摘要: 利用中国1979—2019年逐日降水格点数据,考量降水的时空聚集性强度之客观监测方法,识别中国东部区域极端降水事件,发现长江中下游是夏季持续3 d及以上区域持续性极端降水(PREP)发生最频繁的区域。以此为研究对象,基于水汽收支理论,利用ERA-Interim再分析资料和带通滤波方法,诊断日降水及其水汽收支的季节内特征,研究关键尺度对流层高低空系统配置及演变。结果显示:PREP日降水强度及其演变被证实与区域大气柱水汽辐合量相一致。10~30 d准双同振荡(QBWO)和30~90 d(MJO)的水汽辐合在事件发生前1~3 d和7~9 d开始由负位相转为正位相。区域南、北边界QBWO(MJO)水汽输送在事件发生前2~4 d(9~10 d)由水汽输出转为输入。南海的QBWO对流北传至长江中下游,促使源于西北太平洋的对流层低层QBWO反气旋式环流系统向西南移动,其西北侧的西南风使区域南边界水汽输送在事件开始日达最大。事件发生前10 d左右,对流层低层MJO反气旋式环流系统出现在西北太平洋,并向西南移动,长江中下游气旋系统加强维持,对流层中层孟加拉湾MJO尺度低槽开始加深,三者的配合使区域南边界的MJO水汽输入逐渐增强并维持到事件发生后。MJO尺度的强水汽输入结合QBWO反气旋式环流促使长江中下游地区的持续性极端降水事件的发生。研究结果对持续性极端降水事件延伸期的预报提供参考。Abstract: Based on the gridded daily precipitation dataset in China from 1979 to 2019, the extreme precipitation events in eastern China are identified by using an objective method that comprehensively considers the temporal-spatial strength of gathering. Persistent regional extreme precipitation (PREP) events lasting for at least three days in summer are found most frequently in the middle and lower reaches of the Yangtze River (MLRYR). Based on moisture budget theory, the intraseasonal characteristics of daily precipitation and its moisture budget are diagnosed, and the configuration and evolution of the troposphere systems at primary intraseasonal scales are revealed. The daily precipitation intensity and evolution of PREP proved to be consistent with regional atmospheric column moisture convergence. The 10~30 day quasi-biweekly oscillation (QBWO) and 30~90 day Madden-Julian oscillation (MJO) moisture convergence converted from negative phase to positive phase 1~3 days and 7~9 days prior to the event. The QBWO-related (MJO-related) moisture transport on the region's southern and northern boundary changed from outward to inward 2~4 days (9~10 days) prior to the event. The QBWO-related convection in the South China Sea propagated northward to the MLRYR, prompting corresponding anticyclonic circulation that originated from the northwest Pacific and was in the lower troposphere to move southwestward. Due to the southwest wind in the northwest, the moisture transport in the southern boundary reached the maximum on the onset date of the event. Ten days before the event, the MJO-related anticyclonic circulation in the lower troposphere appeared in the northwestern Pacific Ocean and moved southwestward, the cyclone system in the MLRYR strengthened, while the MJO-related trough that was in the Bay of Bengal and in the middle troposphere began to deepen. Together, these factors gradually increased the MJO-related moisture inward transport in the southern boundary and maintained it until the end of the event. Overall, the combination of the strong MJO-related moisture inward transport and QBWO-related anticyclonic circulation contributed to the occurrence of PREP in the MLRYR.
-
图 9 同图 8,但为MJO分量
图 12 同图 11,但为MJO分量
-
[1] TANG Y B, GAN J J, ZHAO L, et al. On the climatology of persistent heavy rainfall events in China[J]. Adv Atmos Sci, 2006, 26(5): 678- 692. [2] CHEN Y, ZHAI P M. Persistent extreme precipitation events in China during 1951-2010[J]. Climate Res, 2013, 57(2): 143-155. [3] HONG W, REN X J. Persistent heavy rainfall over South China during May-August: subseasonal anomalies of circulation and sea surface temperature[J]. Acta Meteor Sinic, 2013, 27(06): 769-787. [4] 叶梦茜, 余锦华, 谢洁宏, 等. 中国东部区域极端降水事件特征——两种方法监测对比[J]. 气象科学, 2021, 41(6): 752-760. [5] 李华实, 王东海, 陆虹, 等. 广西汛期大范围持续性强降水特征与天气学分型研究[J]. 热带气象学报, 2023, 39(2): 242-255. [6] 汪铃儿, 陈科艺. 2000—2020年西太平洋热带气旋路径对江淮梅雨期降水的影响研究[J]. 热带气象学报, 2023, 39(4): 632-642. [7] 林爱兰, 谷德军, 李春晖, 等. 影响华南汛期持续性强降水年际变化的大气环流和海温异常[J]. 热带气象学报, 2022, 38(1): 1-10. [8] MADDEN R A, JULIAN P R. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J Atmos Sci, 1971, 28(5): 702-708. [9] MADDEN R A, JULIAN P R. Observations of the 40-50 day tropical oscillation—a review[J]. Mon Wea Rev, 1994, 122(5): 814-837. [10] 王黎娟, 庞玥, 于波, 等. 江淮地区梅雨期持续性强降水及其10−30 d低频环流特征[J]. 热带气象学报, 2014, 30(5): 851-860. [11] LI R Y, ZHOU W. Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic, intraseasonal, and low-frequency background[J]. Climate Dyn, 2015(45): 1 043-1 057. [12] MAO J Y, WU G X. Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer [J]. Climate Dyn, 2006(27): 815-830. [13] LIU H B, YANG J, ZHANG D L, et al. Roles of synoptic to quasi-biweekly disturbancesin generating the summer 2003 heavy rainfall in east China[J]. Mon Wea Rev, 2014, 142(2): 886-904. [14] 丁一汇, 胡国权. 1998年中国大洪水时期的水汽收支研究[J]. 气象学报, 2003, 61(2): 129-145. [15] 徐敏, 田红. 淮河流域2003年梅雨时期降水与水汽输送的关系[J]. 气象科学, 2005, 25(3): 265-271. [16] 周玉淑, 高守亭, 邓国. 江淮流域2003年强梅雨期的水汽输送特征分析[J]. 大气科学, 2005, 29(2): 195-204. [17] 陈晓红, 余金龙, 邱学兴, 等. 2005年7月4-11日淮河流域强降水过程的水汽收支分析[J]. 气象, 2007, 33(4): 47-52. [18] LU E, ZHAO W, ZOU X, et al. Temporal-spatial monitoring of extreme precipitation event: determining simultaneously the time period it lasts and the geographic region it Affects[J]. J Climate, 2017, 30(16): 6 123-6 132. [19] 赵炜. 基于聚类分析和REID方法的降水极端事件识别方法及其应用[D]. 南京: 南京信息工程大学, 2018. [20] 赵煜飞, 朱江. 近50年中国降水格点日值数据集精度及评估[J]. 高原气象, 2015, 34(1): 50-58. [21] 吴晶璐, 惠品宏, 刘建勇, 等. 江淮流域极端降水时空变化特征: 站点观测和再分析的对比[J]. 大气科学学报, 2019, 42(2): 207-220. [22] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597. [23] QI Y J, LI T M, ZHANG R H, et al. Interannual relationship between intensity of rainfall intraseasonal oscillation and summer-mean rainfall over Yangtze River Basin in eastern China[J]. Climate Dyn, 2019, 53(5-6) : 3 089-3 108. [24] LI L, ZHAI P M, CHEN Y, et al. Low-frequency oscillations of the East Asia-Pacific teleconnection pattern and their impacts on persistent heavy precipitation in the Yangtze-Huai River valley[J]. J Meteor Res, 2016, 30(4): 459-471. [25] HSU P C, LEE J Y, HA K J. Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China[J]. Int J Climatol, 2015, 36(3): 1 403-1 412. [26] Intergovernmental Panel on Climate Change. Climate Change: the physical science basis. Working group I Contribution to fifth assessment report of the intergovernmental panel on Climate change[R]. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013.