Research on Quantitative Precipitation Estimation by Polarized Radar Using CNN
-
摘要: 利用偏振升级改造后的广州新一代天气雷达(CINRAD/SAD)水平反射率ZH、差分传播相移率KDP、差分反射率因子ZDR和广东佛山219个地面气象自动站雨量数据,形成不同偏振量组合的8个数据集。基于卷积神经网络(CNN),建立雷达定量降水估测网络架构QPEnet,并将该架构用于雷达定量降水估测(QPE),评估结果表明:数据集通道数N的增加可降低QPEnet的定量降雨估测的均方根误差(RMSE),并提高相关系数(CORR);对于由ZH形成的数据集Z、Z_1~3 km和Z_6 min,随着通道数N的增加,数据集Z、Z_1~3 km和Z_6 min的性能逐步得到提高,数据集Z_1~3 km和Z_6 min的均方根误差(RMSE)分别是4.71和3.78,比数值集Z分别降低了1.3% 和18.7%;数据集Z_1~3 km和Z_6 min的CORR分别是0.82和0.88,比数据集Z分别提高了2.5%和10.0%;对于ZH、KDP和ZDR偏振量组成的数据集里面,数据集Z_ZDR_KDP的拟合性能最好,RMSE为3.97,比数据集Z的RMSE降低了14.6%,CORR是0.86,比数据集Z提高了7.5%;分别对0.6~5mm、5~10 mm、10~20 mm、20~30 mm、30~40 mm、40~50 mm和50 mm以上的7个降水量级的均方根误差(RMSE)、平均偏差比(MBR)、平均误差(AE)和相对误差(RE)等的统计结果表明,数据集Z_6 min降雨精度最高。Abstract: The ZH, ZDR and KDP of Guangzhou S-band dual polarization radar and rainfall data of 219 automatic meteorological stations in Foshan are used to form 8 datasets. Based on the convolutional neural network CNN, a radar quantitative precipitation estimation model is established, which will be used for ground precipitation estimation. The evaluating results of 8 datasets applied to the same precipitation estimation model are compared to each other. The results show that: The increase in the number of channels(N) of the datasets is beneficial to reduce the RMSE and improve CORR of the quantitative rainfall estimation results; For the datasets Z, Z_1~3 km and Z_6 min formed by ZH, as the number of channels increases, the performance of the data sets Z, Z_1~3 km and Z_6 min are gradually improved, and the RMSE of Z_1~3 km and Z_6 min are 4.71 and 3.78, which are -1.3% and 18.7% lower than that of dataset Z; the CORR of Z_1~3 km and Z_6 min are 0.82 and 0.88, which are 2.5% and 10% higher than that of dataset Z; Among other datasets composed of KDP and ZDR, the dataset Z_ZDR_KDP has the best fitting performance. The RMSE is 3.97, which is 14.6% lower than that of dataset Z, and the CORR is 0.86, which is 7.5% higher than that of dataset Z; The statistical results of RMSE, MBR, AE and RE for seven precipitation levels of 0.6~5 mm, 5~10 mm, 10~20 mm, 20~30 mm, 30~40 mm, 40~50 mm and above 50 mm respectively, show that dataset Z_6 min has the highest rainfall accuracy.
-
表 1 各数据集的参数数据集
数据集 尺寸(25×25×N) 参数配置 Z 25×25×1 1 km等高高度的ZH KDP 25×25×1 1 km等高高度的KDP Z_ZDR 25×25×2 1 km等高高度的ZH和ZDR Z_KDP 25×25×2 1 km等高高度的ZH和KDP ZDR_KDP 25×25×2 1 km等高高度的ZDR和KDP Z_ZDR_KDP 25×25×3 1 km等高高度的ZH、ZDR和KDP Z_1~3 km 25×25×3 1 km、2 km和3 km等高高度的ZH Z_6 min 25×25×10 1 h逐6 min的1 km等高高度的ZH 表 2 各数据集的整体评价指标
数据集 通道数 RMSE(mm) CC MBR ME(mm) RE KDP 1 4.88 0.78 0.996 -0.024 53% Z 1 4.65 0.8 1.002 0.011 49% Z_1~3 km 2 4.71 0.82 0.992 -0.047 45% Z_ZDR 2 4.38 0.83 1.000 0.001 46% Z_KDP 2 4.16 0.85 1.005 0.027 44% ZDR_KDP 3 4.15 0.85 1.005 0.026 44% Z_ZDR_KDP 3 3.97 0.86 0.992 -0.002 42% Z_6 min 10 3.78 0.88 1.000 0.006 37% -
[1] GARCIA-PINTADO J, BARBERA G G, ERENA M, et al. Rainfall estimation by rain gauge-radar combination: A concurrent multiplicative-additive approach[J]. Water Resources Research, 45(1): W01415. [2] 杨艳蓉, 王振会, 张沛源. 利用多普勒天气雷达资料对一次暴雨过程的同化模拟[J]. 南京气象学院学报, 2008, 31(5): 633-639. [3] MARSHALL J S, PALMER W Mc K. The distribution of raindrops with size[J]. J Meteor, 1948, 5(4): 165-166. [4] SELIGA T A, BRINGI V N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation[J]. J Appl Meteor, 1976, 15(1): 69-76. [5] BRINGI V N, CHANDRASEKAR V, BALAKRISHNAN N, et al. An examination of propagation effects in rainfall on radar measurements at microwave frequencies[J]. Journal of Atmospheric and Oceanic Technology, 1990, 7(6): 829-840. [6] 刘黎平, 钱永甫, 王致君. 双线偏振雷达测雨效果的对比分析[J]. 大气科学, 1996, 20(5): 615-619. [7] 殷秀良, 张培昌. 双线偏振雷达测雨公式的对比分析[J]. 南京气象学院学报, 2000, 23(3): 428-434. [8] 赵果, 楚荣忠, 张彤, 等. 偏振多普勒雷达定量测量降雨精度的改进[J]. 高原气象, 2011, 30(2): 498-507. [9] 汪舵, 刘黎平, 吴翀. 基于相态识别的S波段双线偏振雷达最优化定量降水估测方法研究[J]. 气象, 2017, 43(9): 1 041-1 051. [10] 张扬. 业务双偏振雷达网与自动站联合定量降水估测方法及效果分析研究[D]. 北京: 中国气象科学研究院, 2019. [11] 陈超, 胡志群, 胡胜, 等. CINRAD-SA双偏振雷达资料在降水估测中的应用初探[J]. 气象, 2019, 45(1): 113-125. [12] WEI T, LEI Y, LIU W, et al. Ground radar precipitation estimation with deep learning approaches in meteorological private cloud[J]. Journal of Cloud Computing Advances Systems and Applications, 2020, 9(1): 1-12. [13] YO T S, SU S H, CHU J L, et al. A deep learning approach to radar-based QPE[J]. Earth and Space Science, 2021, 8(3): 10.1029/2020EA001840. [14] WANG S, ZHOU A, YANG M, et al. Service composition in cyber-physical-social systems[J]. IEEE Transactions on Emerging Topics in Computing, 2017, 8(1): 82-91. [15] ZHOU J, SUB J, CONG P, et al. Security-critical energy-aware task scheduling for Heterogeneous real-time MPSoCs in IoT[J]. IEEE Transactions on Services Computing, 2020, 13(4): 745-758. [16] LIU W, WANG Z, LIU X, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26. [17] DARJI M P, DABHI V K, PRAJAPATI H B, Rainfall forecasting using neural network: A survey[C]//2015 International Conference on Advances in Computer Engineering and Applications. Ghaziabad: IEEE. 2015: 706-713. [18] NAYAK D R, MAHAPATRA A, MISHRA P A survey on rainfall prediction using artificial neural network[J]. International journal of Computer Applications, 2013, 72(16): 32-40. [19] 张晨阳, 杨雪冰, 张文生. 气象大数据超短临精准降水机器学习与典型应用[J]. 农业大数据学报, 2019, 1(1): 78-87. [20] 陈训来, 陈元昭, 赵春阳, 等. 梯度提升决策树在雷达定量降水估测中的应用研究[J]. 气象科技进展, 2019, 9(3): 132-137. [21] 傅德胜, 肖晨, 谭畅, 等. RBF神经网络在雷达定量估测降水中的应用研究[J]. 气象科学, 2015, 35(2): 199-203. [22] CHEN H, CHANDRASEKAR V, TAN H, et al. Rainfall estimation from ground radar and TRMM precipitation radar using Hybrid Deep Neural Networks[J]. Geophysical Research Letters, 2019, 46(17-18): 10 669-10 678. [23] TANG Y, YANG X, ZHANG W, et al. Radar and rain gauge merging-based precipitation estimation via geographical-temporal attention continuous conditional random field[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5 558-5 571. [24] WU Y, TANG Y, YANG X, et al. Graph convolutional regression networks for quantitative precipitation estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(7): 1 124-1 128. [25] HAN L, SUN J, ZHANG W, et al. A machine learning nowcasting method based on real‐time reanalysis data[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(7): 4 038-4 051. [26] ZHANG C, BENGIO S, HARDT M, et al. Understanding Deep Learning Requires Rethinking Generalization[C]//5th International Conference on Learning Representation. Toulon, France, 2017. [27] LOFFE S, SZEGEDY C. Batch Normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lile, France, 2015: 448-456.