Offshore Tropical Cyclone Locating Method for Fujian Based on Network Doppler Radial Velocity Field
-
摘要: 本文探讨了一种基于组网多普勒雷达径向速度零速度线(区)对福建近海台风中心定位的方法,该方法利用了台风中心位于雷达径向速度产品中零速度线(区)上的特征,理论上可以将两部(或以上)多普勒雷达零速度线(区)的重合点(或区域)认定为台风中心,并利用空间密度聚类法和线性回归分析对台风零速度线(区)弯曲、不连续以及重合点不唯一等情况做进一步中心定位判定。研究发现,该方法时空分辨率高、定位精准,可以对发展形态不规则、速度模糊、临近登陆或登陆后的台风实现定位,对台风实时业务定位和路径预报等具有一定的参考价值,同时具有简单易行、适用范围广的优势。Abstract: This paper discussed a novel method for locating the center of offshore tropical cyclones in Fujian using the zero velocity line (or zone) in the radial velocity field of networked Doppler radars. This method was based on the fact that the typhoon center is invariably located on the zero velocity line (or zone), as depicted in the radar's radial velocity diagram. The intersection (or the vicinity of the intersection) of the zero velocity line of two or more Doppler radars was identified as the typhoon center. The results showed that this method has high spatial and temporal resolution, and the locations identified are basically consistent with the results from the China Meteorological Administration, thus providing valuable insights for real-time typhoon positioning and forecasting. This method provides a feasible way to navigate the challenges posed by the irregularity of typhoon reflectivity echo shape and velocity ambiguity, enabling quick and accurate positioning of the typhoon's center as it approaches or makes landfall.
-
Key words:
- typhoon positioning /
- Doppler radar /
- networking /
- radial velocity /
- zero velocity line
-
表 1 台风“莫兰蒂”、“玛莉亚”、“卢碧”定位情况
台风 时次(北京时) 中央气象台定位 零速度线(区)法定位 绝对误差 1614号台风“莫兰蒂” 9月14日23时 118.7 °E,23.7 °N 118.66 °E,23.74 °N 0.04 °E,0.04 °N 9月15日00时 118.5 °E,23.9 °N 118.60 °E,23.94 °N 0.10 °E,0.04 °N 9月15日01时 118.5 °E,24.1 °N 118.51 °E,24.13 °N 0.01 °E,0.03 °N 9月15日02时 118.4 °E,24.3 °N 118.37 °E,24.34 °N 0.03 °E,0.04 °N 9月15日03时 118.3 °E,24.5 °N 118.23 °E,24.56 °N 0.07 °E,0.06 °N 9月15日04时 118.1 °E,24.7 °N 118.02 °E,24.65 °N 0.08 °E,0.05 °N 9月15日05时 117.9 °E,24.8 °N 117.84 °E,24.78 °N 0.06 °E,0.02 °N 9月15日06时 117.8 °E,24.9 °N 117.70 °E,24.91 °N 0.10 °E,0.01 °N 9月15日07时 117.7 °E,25.0 °N 117.57 °E,25.05 °N 0.13 °E,0.05 °N 1808号台风“玛利亚” 7月11日07时 120.6 °E,26.3 °N 120.48 °E,26.25 °N 0.12 °E,0.05 °N 7月11日08时 120.3 °E,26.4 °N 120.13 °E,26.32 °N 0.17 °E,0.08 °N 7月11日09时 119.9 °E,26.4 °N 119.73 °E,26.35 °N 0.17 °E,0.05 °N 7月11日10时 119.5 °E,26.3 °N 119.39 °E,26.24 °N 0.11 °E,0.06 °N 7月11日11时 119.1 °E,26.2 °N 119.08 °E,26.24 °N 0.02 °E,0.04 °N 7月11日12时 118.9 °E,26.3 °N 118.85 °E,26.31 °N 0.05 °E,0.01 °N 7月11日13时 118.7 °E,26.4 °N 118.58 °E,26.41 °N 0.12 °E,0.01 °N 2109号台风“卢碧” 8月5日18时 117.5 °E,23.8 °N 117.51 °E,23.74 °N 0.01 °E,0.06 °N 8月5日19时 117.6 °E,23.9 °N 117.58 °E,23.91 °N 0.02 °E,0.01 °N 8月5日20时 117.6 °E,24.0 °N 117.55 °E,23.93 °N 0.05 E°,0.07 °N 8月5日23时 117.6 °E,24.1 °N 117.50 °E,24.14 °N 0.10 °E,0.04 °N 8月6日02时 117.6 °E,24.2 °N 117.61 °E,24.18 °N 0.01 °E,0.02 °N 8月6日05时 117.7 °E,24.3 °N 117.88 °E,24.29 °N 0.18 °E,0.01 °N 8月6日08时 118.2 °E,24.3 °N 118.22 °E,24.31 °N 0.02 °E,0.01 °N 8月6日11时 118.5 °E,24.6 °N 118.54 °E,24.58 °N 0.04 °E,0.02 °N 8月6日14时 118.9 °E,24.8 °N 118.89 °E,24.77 °N 0.01 °E,0.03 °N 8月6日17时 119.3 °E,25.0 °N 119.12 °E,25.09 °N 0.18 °E,0.09 °N -
[1] 余贞寿, 郝增周, 谢海华, 等. 台湾岛地形对台风"海棠"(0505)移动路径影响的数值实验研究[J]. 热带气象学报, 2007, 23(6): 575-580. [2] NOLAN D S, ZHANG J A, STERN D P. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of insitu observations and high-resolution simulations of Hurricane Isabel(2003). Part Ⅰ : Initialization, maximum winds, and the outer-core boundary layer[J]. Mon Wea Rev, 2016, 137(11): 3 651-3 674. [3] 卫星云图联合分析组. 用卫星云图分析预报台风的方法[J]. 气象, 1980(9): 24-27. [4] 王燕燕, 叶臻, 孙尉迟. 台风中心的旋转定位[J]. 中国图像图形学报, 2002, 7A(5): 491-494 [5] 刘正光, 喻远飞, 吴冰. 利用云导风矢量的台风中心自动定位[J]. 气象学报, 2003, 61(5): 636-640. [6] 陈善敏. 应用红外增强显示云图分析台风[M]. 1985年台风会议文集. 北京: 气象出版社, 1987: 199-211. [7] 李修芳, 范蕙君, 燕芳杰. 用增强显示云图确定热带气旋强度的方法[J]. 应用气象学报, 1993, 4(3): 362-369. [8] 许映龙, 张玲, 向纯怡. 台风定强技术及业务应用—以Dvorak技术为例[J]. 气象科技进展, 2015, 5(4): 22-34. [9] DVORAK V F, Tropical cyclone intensity analysis and forecasting from satellite imagery[J]. Mon Wea Rev, 1975, 103(5): 420-430. [10] 许映龙, 娇梅燕, 毕保贵等. 近海台风雷达定位方法应用研究[J]. 大气科学, 2006, 30(6): 1 119-1 128. [11] SENN H V, HISER H W. On the origin of hurricane spiral bands[J]. J Meteor, 1959, 16: 419-426. [12] ANTHES R A. Tropical Cyclones: Their Evolution, Structure and Effects[J]. Amer Meteor Soc, 1982: 208. [13] GRIFFIN I S, BURPEE R W, MARKS F D, et al. Real-time airborne analysis of aircraft data supporting operational hurricane forecasting [J]. Wea Forecasting, 1992, 7: 480-490. [14] 周笃诚, 刘同达. 十公分雷达所探测到的台风回波特征. 台风会议文集(1981)[M]. 上海: 上海科学技术出版社, 1983: 153-154. [15] 张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京: 气象出版社, 2001. [16] DONALDSON R J. Vortex signature recognition by a Doppler radar[J]. J Appl Meteor, 1970, 9: 661-670. [17] WILSON J W, WILK K E. Nowcasting applications of Doppler radar[M]//Browning K A(eds). London: Academic Press, 1982: 87-105. [18] 张保亮. 登陆中台风环流变化分析: 贺伯(1996)台风个案研究[D]. 中国台湾: 中国台湾大学大气科学研究所, 2000. [19] WOOD V T, BROWN R A. Single Doppler velocity signatures: Anatlas of patterns on clear air/widespread precipitation and convective storms. NOAA Tech Memo: ERL NSSL-95[R]. Norman: Nation Severe Storms Laboratory, 1983. [20] WOOD V T. A technique for detecting tropical cyclone center using a Doppler radar[J]. Atmos Oceanic Technol, 1994, 11: 1 207-1 216 [21] 周仲岛, 邓秀明, 张保亮. 多普勒雷达在台风中心定位与最大风速半径的应用[J]. 大气科学(中国台湾), 1996, 24: 1-24. [22] 张勇, 刘黎平, 张志强, 等. 基于组网天气雷达的台风定位方法探讨[J]. 气象科技, 2011, 39(5): 587-595. [23] LIU H, WANG H, QI L, et al. Typhoon positioning method using Dual-Radar zero radial velocity lines and preliminary test[J]. Tropical Cyclone Research and Review, 6(1-2): 26-33. [24] 吕启深, 贾逸伦, 黄荣辉, 等. 基于空间密度聚类与LS-SVM的雷云预测方法[J]. 电力科学与技术学报, 2017, 32(1): 90-96. [25] 魏锦成. 单多普勒雷达的台风速度回波特征分析[D]. 南京: 南京信息工程大学, 2007: 18-28.