Analysis of Boundary Layer Structure of Super Typhoon Meranti (1614) Using Wind Profiler Radar Data
-
摘要: 利用翔安风廓线雷达和厦门探空雷达资料,对2016年超强台风“莫兰蒂”外雨带(距离台风中心120~ 220 km)和外围晴空(距离台风中心400~630 km)边界层结构进行观测分析,结果表明:在超强台风“莫兰蒂”外雨带,风廓线雷达反演的最大切向风速高度分布在入流层下方0.5~1.0 km处,并且随着台风中心的靠近,最大切向风速和入流层高度都有降低的趋势,受降雨粒子的影响,风廓线雷达只能定性反映台风外雨带最大切向风速高度和入流层高度分布特征。在超强台风“莫兰蒂”外围晴空天气下,最大切向风速高度与入流层高度具有一致性,其边界层高度变化比较平稳,高度分布在1.2~1.6 km之间,能够定量反映台风外围晴空边界层高度分布;相对于传统热力驱动的湍流,台风系统边界层湍流主要由风切变驱动,台风外围湍流活动的增强主要发生在最大切向风速高度附近,除了风切变还有其他比较重要的驱动源,表明在台风边界层顶部附近有更加复杂的湍流活动,需要更加精细的湍流通量试验确定其来源。Abstract: This study employed wind profiler radar data from Xiang'an and radiosonde data from Xiamen to analyze the boundary layer structure in two distinct regions surrounding Super Typhoon Meranti in 2016: the outer rainband (120—220 km from the typhoon center) and the clear sky area (400—630 km from the typhoon center). The results showed that, in the outer rainband, the maximum tangential wind speed retrieved by the wind profiler radar was predominantly found 0.5—1.0 km below the inflow layer. As the typhoon center approached, the height of the maximum tangential wind speed and the height of the inflow layer exhibited a downward trend. The presence of rainfall particles, however, limited the wind profiler radar's capability to provide only qualitative assessment of the distribution patterns of the height of the maximum tangential wind speed and the height of the inflow layer in the outer rainband of the typhoon. In the clear sky area, the height of the maximum tangential wind speed was consistent with the height of the inflow layer, and the height of the boundary layer remained relatively stable, ranging between 1.2—1.6 km. This allowed for a quantitative representation of the boundary layer height distribution in the clear sky area around the typhoon. Compared with thermal turbulence, the turbulence in the boundary layer of the typhoon system was mainly driven by wind shear. The enhancement of the turbulence activities around the typhoon mainly occurred near the height of the maximum tangential wind speed. In addition to wind shear, there were other important driving forces, indicating more complex turbulence activities near the top of the typhoon boundary layer. More detailed turbulence flux experiments are needed to determine the driving forces of these activities.
-
图 9 9月14日07:15探空径向风、切向风和虚位温曲线
说明同图 5。
图 10 翔安站切向风速分布
说明同图 7。
图 11 翔安站径向速度分布
说明同图 8。
-
[1] MOSS M S, MERCERET F J. A note on several low-layer features of Hurricane Eloise (1975)[J]. Mon Wea Rev, 1976, 104(7): 967-971. [2] DONAHER S L, ALBRECHT B A, FANG M, et al. Wind profiles in tropical cyclone stratiform rainbands over land[J]. Mon Wea Rev, 2013, 141(11): 3 933-3 949. [3] KOROLEV V S, PETRICHENKO S A, PUDOV V D. Heat and moisture exchange between the ocean and atmosphere in Tropical Storm Tess and Skip[J]. Sov Meteor Hydrol, 1990, 22(3): 92-94. [4] FRANKLIN J L, BLACK M L, VALDE K. GPS dropwindsonde wind profiles in hurricanes and their operational implications[J]. Wea Forecasting, 2003, 18(1): 32-44. [5] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422 (6 929): 279-283. [6] BAI L N, YU H, XU Y H, et al. Mean structure of tropical cyclones making landfall in mainland china[J]. J Meteor Res, 2014, 28(3): 407-419. [7] 史文浩, 汤杰, 陈勇航, 等. 多普勒激光雷达探测台风"利奇马"边界层风场精度分析[J]. 热带气象学报, 2020, 36(5): 577-589. [8] 周芯玉, 梁建茵, 黄健, 等. 台风"天鹅""、巨爵"登陆过程风场结构特征的研究[J]. 热带气象学报, 2012, 28(6): 809-818. [9] 李利孝, 肖仪清, 宋丽莉. 基于风观测塔和风廓线雷达实测的强台风黑格比风剖面研究[J]. 工程力学, 2012, 29(9): 284-293. [10] 宋丽莉, 毛慧琴, 汤海燕, 等. 广东沿海近地层大风特性的观测分析[J]. 热带气象学报, 2004, 20(6): 731-736. [11] 赵坤, 王明筠, 朱科锋, 等. 登陆台风边界层风廓线特征的地基雷达观测[J]. 气象学报, 2015, 73(5): 837-852. [12] MING J, ZHANG J A, ROGERS R F, et al. Multiplatform observations of boundary layer structure in the outer rainbands of landfalling typhoons[J]. J Geophys Res Atmos, 2014, 119(13): 7 799-7 814. [13] 廖菲, 邓华, 李旭. 基于风廓线雷达的广东登陆台风边界层高度特征研究[J]. 大气科学, 2017, 41 (5): 949−959. [14] 张梦佳, 沈学顺, 何平, 等. 基于风廓线仪的华南地区夏季边界层湍流统计特征研究[J]. 热带气象学报, 2018, 34(4): 535-545. [15] TROEN I L, MAHRT A. Simple model of the atmospheric boundary layer: Sensitivity to surface evaporation[J]. Bound-Layer Meteor, 1986, 37: 129-148. [16] HONG S Y, PAN H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon Wea Rev, 1996, 124: 2 322-2 339. [17] VOGELEZANG D H P, HOLTSLAG A A M. Evaluation and model impacts of alternative boundary-layer height formulations[J]. Bound-Layer Meteor, 1996, 81: 245-269. [18] BELJAARS A C M, VITERBO P. Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers [M]. A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences. 1998, 287-304. [19] NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J]. Bound-Layer Meteor, 2003, 107: 421-427. [20] STULL R B. An introduction to boundary layer meteorology[M]. Kluwer Academic, 1988, 666 pp. [21] ZHANG J A, ROGERS R F, NOLAN D S, et al. On the characteristic height scales of the hurricane boundary layer[J]. Mon Wea Rev, 2011, 139: 2 523-2 535. [22] MING J, ZHANG J A, ROGERS R F. Typhoon kinematic and thermodynamic boundary layer structure from dropsonde composites[J]. J Geophys Res: Atmos, 2015, 120: 3 158-3 172. [23] REN Y, ZHANG J A, GUIMOND S R, et al. Hurricane Boundary Layer Height Relative to Storm Motion from GPS Dropsonde Composites [J]. Atmosphere, 2019, 10(6): 339. [24] 蔡晓冬, 明杰, 王元. 基于下投式探空仪资料的超强台风蔷薇(2008)动力和热力结构特征分析[J]. 地球物理学报, 2019, 62(3): 825-835. [25] KEPERT J D, SCHWENDIKE J, RAMSAY H. Why is the tropical cyclone boundary layer not"Well Mixed"?[J]. J Atmos Sci, 2016, 73 (3): 957-973. [26] ZHANG J A, DRENNAN W M, BLACK P G, et al. Turbulence structure of the hurricane boundary layer between the outer rainbands[J]. J Atmos Sci, 2009, 66: 2 455-2 467. [27] 马孝林, 王举, 黄泓, 等. 台风"莫兰蒂"登陆前后微物理特征研究[J]. 气象科学, 2022, 42(6): 730-741. [28] 吴蕾, 陈洪滨, 康雪. 风廓线雷达与L波段雷达探空测风对比分析[J]. 气象科技, 2014, 42(2): 225-230. [29] 王丽吉, 陈晔峰, 吴书成, 等. 对风廓线雷达和L波段雷达探空观测的水平风场的一致性评估[J]. 浙江大学学报(理学版), 2020, 47(5): 593-600. [30] 王栋成, 邱粲, 董旭光, 等. 济南边界层风廓线雷达与L波段雷达大风探空测风对比[J]. 气象, 2019, 45(8): 1 169-1 180. [31] 郭运, 汤胜茗, 王旭, 等. 不同台风降水强度下风廓线雷达适用性[J]. 热带气象学报, 2021, 37(2): 268-276. [32] HOGAN R J, GRANT A L M, ILLINGWORTH A J, et al. Vertical velocity variance and skewness in clear and cloud‐topped boundary layers as revealed by Doppler lidar[J]. Quart J Roy Meteor Soc, 2009, 135(640): 635-643. [33] HUANG T, YIM SH-L, YANG Y, et al. Observation of turbulent mixing characteristics in the typical daytime cloud-topped boundary layer over Hong Kong in 2019[J] Remote Sensing, 2020, 12(9): 1 533. [34] ALFORD A A, ZHANG J A, BIGGERSTAFF M I, et al. Transition of the hurricane boundary layer during the landfall of Hurricane Irene (2011)[J]. J Atmos Sci, 2020, 77: 3 509-3 531.