Intraseasonal Variation of Sea Surface Temperature over the Tropical Eastern Indian Ocean During Boreal Spring and Summer and Accompanied Atmospheric Response
-
摘要: 基于1982—2020年OISSTv2.1数据集、NOAA Interpolated OLR数据集和NCEP/DOE Ⅱ再分析数据资料,通过功率谱分析、位相合成法等方法研究了春夏季(3—8月)热带东印度洋海温季节内振荡的特征及大气的响应。结果发现春夏季热带东印度洋海温季节内振荡的显著周期主要集中在20~50天,强海温振荡事件主要分布在4—7月,关键区内对流抑制超前暖海温异常1/8周期,滞后冷海温异常3/8周期,反之亦然。春夏季海温异常激发的对流异常呈经向偶极子分布,且有明显的北移演变特征,但北侧的对流中心较南侧弱,即对流在北移过程中迅速衰减。使用K-means聚类法提取了两种具有显著差异的环流响应类型:北移型和局地型。北移型主要分布在夏季,表现为更有组织性的对流偶极子对,南北中心的强度和影响范围相当且北移特征更为清晰。在对流偶极子北移的过程中显著影响阿拉伯海上西南季风的强弱,对印度半岛夏季风季节内变化的影响较大。局地型主要分布在春夏转换季节,对流异常呈单一中心结构,移动性较弱,主要在热带东印度洋上空发展和消亡。热带东印度洋海温季节内振荡耦合的大气环流异常主要影响赤道印度洋地区,对热带外的影响较弱。进一步探究发现,背景东风切变的差异是导致两种对流响应差异的原因。夏季,北印度洋东风切变强,垂直风切变机制导致对流明显北移,春夏转换季节,东风切变弱,垂直风切变机制不成立,较弱的正压涡度平流机制引起对流微弱的北移,但主要在局地生消。
-
关键词:
- 热带东印度洋 /
- 海表温度 /
- 季节内振荡 /
- 大气响应 /
- K-means聚类法
Abstract: The sea surface temperature (SST) over the tropical eastern Indian Ocean (TEIO) during boreal spring and summer shows a significant intraseasonal oscillation (ISO). Based on the NOAA OISSTv2.1 dataset, NOAA Interpolated Outgoing Longwave Radiation dataset and NCEP-DOE Reanalysis Ⅱ data from 1982 to 2020, the characteristics of its intraseasonal variation and the associated atmospheric response were investigated by using power spectrum analysis, phase compositing and K-means clustering. The results show that the temporal variation of the SST anomalies over the TEIO was dominated by a period of 20-50-day, and the strong intraseasonal SST oscillation mainly occurred from April to July. A pronounced ocean-atmosphere interaction could be found over the TEIO at the intraseasonal timescale, with the SST warming leading local convection enhancement by 3 / 8 cycle and lagging convection suppression by 1/8 cycle. The convection anomalies driven by the intraseasonal SST showed a meridional dipole structure. It was characterized by a prominent northward propagation, with the intensity decaying rapidly during the northward movement and the convection in the north weaker than that in the south. Two significant kinds of atmospheric responses were extracted by using K-means clustering: the northwardmoving response and the local response. The northward moving response occurred mainly in summer (June-July), showing a well-organized convective dipole structure with comparable intensity and clear northward propagation. During its northward movement, it affected the strength of the southwesterly monsoon over the Arabian Sea and the intraseasonal variation of the Indian Peninsula summer monsoon significantly. While the local response occurred mainly in the transition season between spring and summer (April-June), and the sole convection center developed and disappeared over the TEIO with a weak migration. Different types of atmospheric response to the intraseasonal SST variation can be attributed to different easterly shear over the North Indian Ocean. In summer, the easterly shear was strong, and the convection propagated northward following the vertical shear mechanism. However, the background easterly shear was weak in the transition season between spring-summer and the vertical wind shear mechanism was inapplicable. The weak vorticity advection mechanism caused the convection to move northward slightly, but it mainly developed and dissipated locally. -
图 4 同图 2,但左列是北移型(a~e)第1~5位相,右列为局地型(f~j)第1~5位相
图 7 同图 6,但等值线(单位:m·s-1,间隔:2 m·s-1)与阴影(单位:1012 s-2)代表第4位相200~850 hPa的平均正压经向风与其对正压涡度的平流输送
-
[1] PHLANDER S G. El Niño, La Niña, and the Southern Oscillation[M]. San Diego: Academic Press, 1990: 230-256. [2] LIN C, HO C, LEE Y, et al. Thermal variability of the Indo-Pacific warm pool[J]. Global and Planetary Change, 2013, 100: 234-244. [3] CHEN Z S, DU Y, WEN Z P, et al. Evolution of south tropical Indian Ocean warming and the climatic impacts following strong El Niño events[J]. J Climate, 2019, 32(21): 7329-7347. [4] 陈更新. 链接热带东印度洋环流的海洋波动桥梁[J]. 地球科学进展, 2022, 37(1): 80-86. [5] 刘秦玉, 谢尚平, 郑小童. 热带海洋-大气相互作用[M]. 北京: 高等教育出版社, 2013: 78-90. [6] 陈红. 热带印度洋夏季水汽输送特征及对南亚季风区降水的影响[J]. 南京信息工程大学学报(自然科学版), 2020, 12(4): 442-449. [7] HUANG S H, WANG B, WEN Z P, et al. Enhanced tropical eastern Indian Ocean rainfall breaks down the tropical easterly jet-Indian rainfall relationship[J]. J Climate, 2021, 34(8): 3039-3048. [8] 邓孟珂, 田鹏飞, 杨华栋, 等. 印度洋海温异常对西北太平洋台风的影响及机制研究[J]. 海洋气象学报, 2021, 41(3): 61-68. [9] 林爱兰, 谷德军, 李春晖, 等. 影响华南汛期持续性强降水年际变化的大气环流和海温异常[J]. 热带气象学报, 2022, 38(1): 1-10. [10] RAO S A, DHAKATE A R, SAHA S K, et al. Why is Indian Ocean warming consistently?[J]. Climatic Change, 2012, 110(3-4): 709-719. [11] LATIF M, BARNETT T P. Interactions of the tropical oceans[J]. J Climate, 1995, 8(4): 952-964. [12] XIE S, ANNAMALAI H, SCHOTT F A, et al. Structure and mechanisms of south Indian Ocean climate variability[J]. J Climate, 2002, 15(8): 864-878. [13] SCHOTT F A, XIE S, MCCREARY J P. Indian Ocean circulation and climate variability[J]. Rev Geophys, 2009, 47(1). [14] XIE S, KOSAKA Y, DU Y, et al. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review[J]. Adv Atmos Sci, 2016, 33(4): 411-432. [15] KRISHNAMURTI T N, OOSTERHOF D K, MEHTA A V. Air-sea interaction on the time scale of 30 to 50 days[J]. J Atmos Sci, 1988, 45(8): 1304-1322. [16] HENDON H H, GLICK J. Intraseasonal air-sea interaction in the tropical Indian and Pacific Oceans[J]. J Climate, 1997, 10(4): 647-661. [17] HORⅡ T, UEKI I, ANDO K, et al. Impact of intraseasonal salinity variations on sea surface temperature in the eastern equatorial Indian Ocean[J]. J Oceanogr, 2016, 72(2): 313-326. [18] MADDEN R A, JULIAN P R. Description of global-scale circulation cells in the tropics with a 40-50 day period day period[J]. J Atmos Sci, 1972, 29(6): 1109-1123. [19] WANG B, XIE X. A model for the boreal summer intraseasonal oscillation[J]. J Atmos Sci, 1997, 54(1): 72-86. [20] 吴捷, 任宏利, 赵崇博, 等. 国家气候中心MJO监测预测业务产品研发及应用[J]. 应用气象学报, 2016, 27(6): 641-653. [21] JIANG X, LI T, WANG B. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation[J]. J Climate, 2004, 17(5): 1022-1039. [22] BOOS W R, KUANG Z. Mechanisms of Poleward Propagating, Intraseasonal Convective Anomalies in Cloud System-Resolving Models [J]. J Atmos Sci, 2010, 67(11): 3673-3691. [23] KEMBALL-COOK S, WANG B, FU X H. Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with an ocean model[J]. J Atmos Sci, 2002, 59(9): 1433-1453. [24] KEMBALL-COOK S, WANG B. Equatorial waves and air-sea interaction in the Boreal summer intraseasonal oscillation[J]. J Climate, 2001, 14(13): 2923-2942. [25] LIU F, WANG B, KANG I. Roles of barotropic convective momentum transport in the intraseasonal oscillation[J]. J Climate, 2015, 28(12): 4908-4920. [26] KANG I, KIM D, KUG J. Mechanism for northward propagation of boreal summer intraseasonal oscillation: Convective momentum transport[J]. Geophys Res Lett, 2010, 37(24): L24804. [27] ZHENG B, HUANG Y Y, LI C. The 30-60-day northward-propagating intraseasonal oscillation over South China Sea during pre-monsoon period in a coupled model[J]. Int J Climatol, 2019, 39(12): 4811-4824. [28] ZHENG B, HUANG Y Y. Mechanisms of Northward-Propagating Intraseasonal Oscillation over the South China Sea during the PreMonsoon Period[J]. J Climate, 2019, 32(11): 3297-3311. [29] BELLON G, SOBEL A H. Instability of the axisymmetric monsoon flow and intraseasonal oscillation[J]. J Geophys Res, 2008, 113(D7). [30] CHOU C, HSUEH Y C. Mechanisms of Northward-Propagating Intraseasonal Oscillation-A Comparison between the Indian Ocean and the Western North Pacific[J]. J Climate, 2010, 23(24): 6624-6640. [31] JONES C, WALISER D E, Gautier C. The influence of the Madden-Julian oscillation on ocean surface heat fluxes and sea surface temperature[J]. J Climate, 1998, 11(5): 1057-1072. [32] SHINODA T, HENDON H H, GLICK J. Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans[J]. J Climate, 1998, 11(7): 1685-1702. [33] FLATAU M, FLATAU P J, PHOEBUS P, et al. The feedback between equatorial convection and local radiative and evaporative processes: the implications for intraseasonal oscillations[J]. J Atmos Sci, 1997, 54(19): 2373-2386. [34] GAO Y X, KLINGAMAN N P, DEMOTT C A, et al. Diagnosing ocean feedbacks to the BSISO: SST-modulated surface fluxes and the moist static energy budget[J]. J Geophys Res, 2019, 124(1): 146-170. [35] REYNOLDS R W, SMITH T M, LIU C, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. J Climate, 2007, 20(22): 5473-5496. [36] LIEBMANN B, SMITH C A. Description of a complete (interpolated) outgoing longwave radiation dataset[J]. Bull Amer Meteor Soc, 1996, 77: 1275-1277. [37] KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al. NCEP-DOE AMIP-Ⅱ Reanalysis (R-2)[J]. Bull Amer Meteor Soc, 2002, 83: 1631-1644. [38] WANG B, WEBSTER P, KIKUCHI K, et al. Boreal summer quasi-monthly oscillation in the global tropics[J]. Climate Dyn, 2006, 27(7-8): 661-675. [39] MACQUEEN J. Some methods for classification and analysis of multivariate observations[J]. Berkeley Symp on Math Statist and Probab, 1967(1): 281-297. [40] MAHDI MA, HOSNY KM, ELHENAWY I. Scalable clustering algorithms for big data: A review[J]. IEEE Access, 2021(9): 80015-80027. [41] 韩微, 翟盘茂. 三种聚类分析方法在中国温度区划分中的应用研究[J]. 气候与环境研究, 2015, 20(1): 111-118. [42] 郑颖青, 余锦华, 吴启树, 等. K-均值聚类法用于西北太平洋热带气旋路径分类[J]. 热带气象学报, 2013, 29(4): 607-615. [43] YAMAURA T, KAJIKAWA Y. Decadal change in the boreal summer intraseasonal oscillation[J]. Climate Dyn, 2017, 48(9-10): 3003-3014. [44] 叶韫盛, 姚永红, 吴其冈. 东亚—西北太平洋地区夏季季节内振荡的年代际变化[J]. 气象科学, 2022, 42(3): 311-323. [45] ZHANG Z, KRISHNAMURTI T N. A generalization of Gill's heat-induced tropical circulation[J]. J Atmos Sci, 1996, 53(7): 1045-1052. [46] GILL A E. Some simple solutions for heat-induced tropical circulation[J]. Qquart J Roy Meter Soc, 1980, 106(449): 447-462. [47] LI T, LING J, HSU P. Madden-Julian Oscillation Its Discovery, Dynamics, and Impact on East Asia[J]. J Meteor Res Japan, 2020, 34(1): 20-42.