ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风条件下火箭探测气象数据与ERA5再分析资料的对比分析

郑一 赵兵科 陈勇航 刘琼 刘统强 宋金轲 魏鑫 魏煜 罗维婷

郑一, 赵兵科, 陈勇航, 刘琼, 刘统强, 宋金轲, 魏鑫, 魏煜, 罗维婷. 台风条件下火箭探测气象数据与ERA5再分析资料的对比分析[J]. 热带气象学报, 2024, 40(3): 526-536. doi: 10.16032/j.issn.1004-4965.2024.047
引用本文: 郑一, 赵兵科, 陈勇航, 刘琼, 刘统强, 宋金轲, 魏鑫, 魏煜, 罗维婷. 台风条件下火箭探测气象数据与ERA5再分析资料的对比分析[J]. 热带气象学报, 2024, 40(3): 526-536. doi: 10.16032/j.issn.1004-4965.2024.047
ZHENG Yi, ZHAO Bingke, CHEN Yonghang, LIU Qiong, LIU Tongqiang, SONG Jinke, WEI Xin, WEI Yu, LUO Weiting. Comparative Analysis of Sounding Rocket Data and ERA5 Reanalysis Data Under Typhoon Conditions[J]. Journal of Tropical Meteorology, 2024, 40(3): 526-536. doi: 10.16032/j.issn.1004-4965.2024.047
Citation: ZHENG Yi, ZHAO Bingke, CHEN Yonghang, LIU Qiong, LIU Tongqiang, SONG Jinke, WEI Xin, WEI Yu, LUO Weiting. Comparative Analysis of Sounding Rocket Data and ERA5 Reanalysis Data Under Typhoon Conditions[J]. Journal of Tropical Meteorology, 2024, 40(3): 526-536. doi: 10.16032/j.issn.1004-4965.2024.047

台风条件下火箭探测气象数据与ERA5再分析资料的对比分析

doi: 10.16032/j.issn.1004-4965.2024.047
基金项目: 

国家重点研发计划 2018YFC1506305

国家重点研发计划 2018YFC1506303

上海台风研究基金项目 TFJJ202202

详细信息
    通讯作者:

    赵兵科,男,陕西省人,研究员,博士,主要从事台风外场观测研究。E-mail:zhaobk@typhoon.org.cn

  • 中图分类号: P435

Comparative Analysis of Sounding Rocket Data and ERA5 Reanalysis Data Under Typhoon Conditions

  • 摘要: 再分析资料的准确性对台风等灾害性天气预报及研究有着重要价值。以往缺乏在强台风条件下平流层内的直接观测资料,使得无法对再分析资料的准确性进行验证,基于新型火箭探测数据对ERA5再分析数据的气象要素在强台风条件下进行对比分析。(1) 台风条件下三次试验ERA5与火箭探测在对流层内的温度廓线几乎重合,15 km以下两者之间的误差不到1 ℃,但15 km以上的平流层两者偏差随高度增加而增大,ERA5比火箭探测的温度明显偏低,在15~20 km、20~30 km、30~40 km和40 km以上两者偏差平均值分别为3.75 ℃、5.52 ℃、14.41 ℃和19.25 ℃;(2) 相对湿度三次试验两者的变化趋势还是比较相似的,但在平流层低层15~20 km两者存在较大差异,火箭探测相对湿度在15 km左右是上干下湿分界高度,而ERA5的分界高度抬升到20 km以上,也就是说ERA5把高湿度层抬升了5 km以上;值得一提的是25 km以上,台风影响前,两者相对湿度都几乎接近0%,而在台风影响期间火箭探测相对湿度可达5%左右,ERA5相对湿度仍然几乎为0%;(3) 台风条件下三次试验风速廓线显示两者在平流层低层到对流层变化趋势十分相似,相关系数可达0.85左右,平均偏差大约为2 m·s-1;而在平流层中高层相似度降低,偏差增大,相较于火箭探空,ERA5风速偏低4 m·s-1左右。

     

  • 图  1  探测火箭飞行程序

    图  2  三次试验下投探空轨迹与台风中心位置示意图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。红线表示探空仪漂移轨迹,彩色点表示台风存在期间每个时刻的台风中心,台风中心经纬度数据来自中国气象局上海台风研究所提供的最佳路径集[12]

    图  3  火箭探空与ERA5温度散点图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。实线代表 1:1线,虚线代表拟合线,相关系数R均通过0.01显著性检验。

    图  4  火箭探空与ERA5温度廓线图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。

    图  5  相较于火箭探空的ERA5温度偏差廓线图

    E1为第1次试验,E2为第2次试验,E3为第3次试验。

    图  6  火箭探空与ERA5相对湿度散点图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。实线代表 1:1线,虚线代表拟合线,相关系数R均通过0.01显著性检验。

    图  7  火箭探空与ERA5相对湿度廓线图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。

    图  8  相较于火箭探空的ERA5相对湿度偏差廓线图

    E1为第1次试验,E2为第2次试验,E3为第3次试验。

    图  9  火箭探空与ERA5风速散点图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。实线代表 1:1线,虚线代表拟合线,相关系数R均通过0.01显著性检验。

    图  10  火箭探空与ERA5风速廓线图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。

    图  11  相较于火箭探空数据的ERA5风速偏差廓线图

    E1为第1次试验,E2为第2次试验,E3为第3次试验。

    图  12  火箭探空与ERA5风向散点图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。实线代表 1:1线,虚线代表拟合线,相关系数R均通过0.01显著性检验。

    图  13  火箭探空与ERA5风向廓线图

    a. 第1次试验;b. 第2次试验;c. 第3次试验。

    图  14  相较于火箭探空的ERA5风速偏差廓线图

    E1为第1次试验,E2为第2次试验,E3为第3次试验。

    表  1  三次试验中离群值数目及其占原数据的比例

    试验 温度 相对湿度 风速 风向
    第1次试验 0(0%) 730(1.47%) 1 390(2.8%) 49(< 0.01%)
    第2次试验 0(0%) 5(< 0.01%) 2 618(11.5%) 2 009(8.8%)
    第3次试验 2(< 0.01%) 64(0.01%) 512(2.03%) 1 315(5.22%)
    下载: 导出CSV
  • [1] 陈联寿. 我国台风预报和研究的进展[J]. 气象, 1979, 5(12): 1-4.
    [2] 赵兵科, 汤杰, 雷小途, 等. 近海台风立体协同观测科学试验进展[J]. 地球科学进展, 2022, 37(8): 771-785.
    [3] 孟宪贵, 郭俊建, 韩永清, 等. ERA5再分析数据适用性初步评估[J]. 海洋气象学报, 2018, 38(1): 91-99.
    [4] 刘婷婷, 朱秀芳, 张世喆, 等. ERA5再分析地面气温数据在中国区域的适用性分析[J]. 热带气象学报, 2023, 39(1): 78-88.
    [5] 李爱莲, 刘泽, 洪新, 等. 台风条件下ERA5再分析数据对中国近海适用性评估[J]. 海洋科学, 2021, 45(10): 71-80.
    [6] 马瑞平. 用织女一号火箭在海南站探测的高空风和风切变[J]. 空间科学学报, 1997(1): 70-74.
    [7] 张元, 刘东升, 王维佳, 等. TK-2GPS人影火箭探空数据与L波段探空数据对比分析[J]. 高原山地气象研究, 2016, 36(1): 91-95.
    [8] 姜国英, 徐寄遥, 史东波, 等. 子午工程首枚气象火箭大气探测结果分析[J]. 科学通报, 2011, 56(19): 1568-1574.
    [9] 雷小途, 雷明, 赵兵科, 等. 火箭弹下投探测台风气象参数新技术及初步试验[J]. 科学通报, 2017, 62(32): 3789-3796.
    [10] 李执山, 叶雷, 雷明, 等. 平流层气象探测火箭载荷释放时间预测方法[J]. 弹道学报, 2020, 32(3): 75-78.
    [11] 杨加春, 王彦明, 李庆军, 等. 探空温度传感器误差预测技术研究[J]. 电子测量与仪器学报, 2021, 35(12): 24-36.
    [12] LU X, YU H, YING M, et al. Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration[J]. Adv Atmos Sci, 2021, 38(4): 690-699.
    [13] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quart J Roy Meteor Soc, 2020, 146(730): 1999-2049.
    [14] 渠鸿宇, 黄彬, 赵伟, 等. HRCLDAS-V1.0和ERA5海面风场对比评估分析[J]. 热带气象学报, 2022, 38(4): 569-579.
    [15] 郑艳萍. ERA5再分析资料在广东省的适用性初步分析[C]//中国气象学会. 第35届中国气象学会年会S20深度信息化: 应用支持与智能发展. 合肥: 2018: 334-340.
    [16] HUANG J, YIN F, WANG M, et al. Evaluation of Five Reanalysis Products With Radiosonde Observations Over the Central Taklimakan Desert During Summer[J]. Earth and Space Science, 2021, 8(5): e2021EA001707.
    [17] 吕润清, 李响. ERA-Interim和ERA5再分析数据在江苏区域的适用性对比研究[J]. 海洋预报, 2021, 38(4): 27-37.
    [18] LIU T, HE Q, CHEN Y, et al. Distinct impacts of humidity profiles on physical properties and secondary formation of aerosols in Shanghai [J]. Atmos Environ, 2021, 267: 118756.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  7
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2024-03-28
  • 网络出版日期:  2024-08-08
  • 刊出日期:  2024-06-20

目录

    /

    返回文章
    返回