ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带海温对珠江三角洲春季灰霾日数年际变化的影响

张思球 李春晖 谷德军 林爱兰

张思球, 李春晖, 谷德军, 林爱兰. 热带海温对珠江三角洲春季灰霾日数年际变化的影响[J]. 热带气象学报, 2024, 40(4): 547-556. doi: 10.16032/j.issn.1004-4965.2024.049
引用本文: 张思球, 李春晖, 谷德军, 林爱兰. 热带海温对珠江三角洲春季灰霾日数年际变化的影响[J]. 热带气象学报, 2024, 40(4): 547-556. doi: 10.16032/j.issn.1004-4965.2024.049
ZHANG Siqiu, LI Chunhui, GU Dejun, LIN Ailan. Impacts of Sea Surface Temperature on the Interannual Variability of Spring Haze[J]. Journal of Tropical Meteorology, 2024, 40(4): 547-556. doi: 10.16032/j.issn.1004-4965.2024.049
Citation: ZHANG Siqiu, LI Chunhui, GU Dejun, LIN Ailan. Impacts of Sea Surface Temperature on the Interannual Variability of Spring Haze[J]. Journal of Tropical Meteorology, 2024, 40(4): 547-556. doi: 10.16032/j.issn.1004-4965.2024.049

热带海温对珠江三角洲春季灰霾日数年际变化的影响

doi: 10.16032/j.issn.1004-4965.2024.049
基金项目: 

广东省基础与应用基础研究基金 2019A1515011808

2019A1515011808 2021B1212020016

详细信息
    通讯作者:

    李春晖,女,广东省人,研究员,主要从事热带天气气候、季节内振荡和短期气候预测。E-mail: chli@gd121.cn

  • 中图分类号: P461

Impacts of Sea Surface Temperature on the Interannual Variability of Spring Haze

  • 摘要: 利用1979—2018年广东省86站气象观测数据、NCEP再分析资料和ERSST海温资料,采用统计方法分析了年际尺度上热带海温对广东省珠江三角洲(简称珠三角)区域春季灰霾(SHDPRD)的影响。结果表明,东南太平洋海温(ISSTSEP)对SHDPRD起主导作用。低层,当东南太平洋海温异常偏冷时,协同变化效应促使南印度洋海温也异常偏冷,激发冷Kelvin波东传,引起西太平洋Ekman辐合,导致异常气旋环流出现。异常气旋环流东北风通过等熵滑动机制诱发异常下沉运动,减少华南降水。高层,与ISSTSEP有密切相关的是500 hPa正EU遥相关,使得广东温度降低,降水偏少。EU遥相关调控局地气象要素,形成有利于灰霾形成的气象要素条件。反之亦然。受异常环流影响,与珠三角春季灰霾日数紧密联系的是降水、垂直速度和对流稳定度,其次是边界层厚度和低层东北风,最后是水汽。ENSO对SHDPRD有一定的调制作用。在El Niño(La Niña)年春季,珠三角水汽增加(减少),垂直上升(下沉)运动增强,降水增多(减少),广东灰霾偏少(多)。

     

  • 图  1  1979—2018年广东省春季灰霾总日数EOF分解第一模态分布(a),相应时间序列变化(b),珠三角29个站分布(c)和珠三角区域平均春季总灰霾日数总的(黑实线)、年际(红色实线)和年代际变化曲线(蓝色虚线)(d)

    单位:天。

    图  2  SHDPRD与春季海温的年际分量之间的相关分布

    阴影为通过90%置信水平下显著检验。绿色框表示具有显著相关性的关键区域。

    图  3  春季海温(a,单位:℃)、降水场(b,单位:mm·day-1)和850 hPa风场(m·s-1)投影到东南太平洋海温(ISSTSEP)指数上的回归系数分布图

    超过90%置信水平的检验用阴影和绿色粗箭头表示。

    图  4  回归到ISSTSEP沿20~25 °N纬向剖面的Walker环流分布(a)和沿110~140 °E的经向Hadley环流(矢量;单位:m·s-1)分布(b)

    超过90%置信水平的检验用阴影和粗箭头表示。

    图  5  春季850 hPa(a)、500 hPa(b) 和200 hPa(c)风场(m·s-1)和位势高度(gpm)分别投影到ISSTSEP

    其中阴影区为通过90%置信度检验。黑色矩形框为珠三角。

    图  6  各气象要素场回归到IEU的空间分布湿度(a,单位:kg·kg-1),500 hPa垂直速度(b,单位:10-3 Pa·s-1),850 hPa经向风(c,单位:m·s-1),Δθe( d,单位:K),PBLH(e,单位:m),降水(f,单位:mm·d-1)以及垂直速度(g,单位:10-3 Pa·s-1),湿度(h,单位:kg·kg-1),温度(i,单位:℃)和相当位温(K)的垂直剖面回归分布

    其中阴影区为通过90%置信度检验。黑色矩形框为珠三角。

    图  7  1979—2018年期间SHDPRD(柱状图:天)的年际变化时间序列

    不同的颜色表示ISSTSEP不同海温下的灰霾日数,红色代表暖异常,蓝色代表冷异常,灰色代表中性状态。红色三角形为El Niño,十字为La Niña。黑色实线表示SHDPRD年平均值,虚线表示高于(低于)0.75个标准差数值。

    图  8  图 5,但为El Niño与40年气候场差值分布。

    图  9  图 8,但为La Niña年。

    表  1  SHDPRD和局地气象要素的相关系数.

    局地气象要素 Shum Omega V850 Δθe PBLH Rain
    SHDPRD -0.26* 0.33** -0.27* -0.32** 0.28* -0.35**
    其中:*为超过95%的置信水平检验,**为超过90%的置信水平检验。
    Shum:1 000 hPa比湿;Omega:500 hPa垂直速度;V850:850 hPa经向风;Δθe:对流稳定度;PBLH:边界层高度;Rain:降水。
    下载: 导出CSV
  • [1] 高歌. 1961~2005年中国霾日气候特征及变化分析[J]. 地理学报, 2008, 63(7): 761-768.
    [2] 吴兑, 吴晓京, 李菲, 等. 1951~2005年中国大陆霾的时空变化[J]. 气象学报, 2010, 68(5): 680-688.
    [3] 宋连春, 高荣, 李莹, 等. 1961~2012年中国冬半年霾日数的变化特征及气候成因分析[J]. 气候变化研究进展, 2013, 9(5): 313-318.
    [4] DING Y H, LIU Y J. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity[J]. Sci China: Earth Sci, 2014, 57: 36-46.
    [5] 王喜全, 孙明生, 杨婷, 等. 京津冀平原地区灰霾天气的年代变化[J]. 气候与环境研究, 2013, 18(2): 165-170.
    [6] CHENG X G, ZHAO T L, GONG S L. Implications of East Asian summer and winter monsoons for interannual aerosol variations over central-eastern China[J]. Atmos Environ, 2016, 129: 218-228.
    [7] CAI W J, LI K, LIAO H, et al. Weather conditions conducive to Beijing severe haze more frequent under climate change[J]. Nat Clim Change, 2017, 7: 257-262.
    [8] YIN Z C, WANG H J. Role of atmospheric circulation in haze pollution in December 2016[J]. Atmos Chem Phys, 2017, 17(18): 11 673-11 681.
    [9] WU P, DING Y H, LIU Y J. Atmospheric Circulation and Dynamic Mechanism for Persistent Haze Events in the Beijing-Tianjin-Hebei Region[J]. Adv Atmos Sci, 2017, 34: 429-440.
    [10] CHEN Y N, ZHU Z W, LUO L, ZHANG J W. Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies[J]. Dyn Atmos Ocean, 2018, 81: 73-83.
    [11] MU M, ZHANG R H. Addressing the issue of fog and haze: A promising perspective from meteorological science and technology[J]. Sci China: Earth Sci, 2014, 57: 1-2.
    [12] YIN Z C, WANG H J, GUO W L. Climatic Change features of fog and haze in winter over North China and Huang-Huai Area[J]. Sci China Earth Sci, 2015, 58(8): 1 370-1 376.
    [13] LI Z Q, ZHANG R H, WANG Y. Interannual variation of the wintertime fog-haze days across central and eastern China and its relation with East Asian winter monsoon[J]. Int J Climatol, 2016, 36(1): 346-354.
    [14] LIN Pei, YAN Z W, SUN Z B, et al. Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends[J]. Atmos Chem Phys, 2018, 18(5): 3 173-3 183.
    [15] ZHANG R H, LI Q, ZHANG R N. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013[J]. Sci China: Earth Sci, 2014, 57: 26-35.
    [16] WANG J, LIU Y J, DING Y H, et al. Impacts of climate anomalies on the interannual and interdecadal variability of autumn and winter haze in North China: a review[J]. Int J Climatol, 2020, 40(10): 4 309-4 325.
    [17] WANG H J, CHEN H P, LIU J P. Arcitc sea ice decline intensified haze pollution in eastern China[J]. Atmos Ocean Sci Lett, 2015, 8(1): 1-9.
    [18] ZOU Y F, WANG Y H, ZHANG Y Z, et al. Arictic sea ice, Eurasia snow, and extreme winter haze in China[J]. Sci Adv, 2017, 3(3): e1602751.
    [19] XU X, ZHAO T, LIU F, et al. Climate modulation of the Tibetan plateau on haze in China[J]. Atmos Chem Phys, 2016, 16(3): 1 365-1 375.
    [20] YIN Z C, WANG H J. Seasonal prediction of winter haze days in the north central North China Plain[J]. Atmos Chem Phys, 2016, 36(10): 3 479-3 491.
    [21] GAO Y, CHEN D. A dark October in Beijing 2016[J]. Atmos Ocean Sci Lett, 2017, 10(3): 206-213.
    [22] WANG J, ZHAO Q H, ZHU Z W, et al. Interannual variation in the number and severity of autumnal haze days in the Beijing-Tianjin-Hebei region and associated atmospheric circulation anomalies[J]. Dyn Atmos Oceans, 2018, 84: 1-9.
    [23] ZHANG Z, ZHANG X, GONG D, et al. Possible influence of atmospheric circulations on winter haze pollution in the Beijing-TianjinHebei region, northern China[J]. Atmos Chem Phys, 2016, 16: 561-571.
    [24] WANG J, ZHU Z W, LI Q, et al. Two pathways of how remote SST anomalies drive the interannual variability of autumnal haze days in the Beijing-Tianjin-Hebei region, China[J]. Atmos Chem Phys, 2019, 19: 1 521-1 535.
    [25] CHENG X G, LIU J, ZHAO T L, et al. A teleconnection between sea surface temperature in the central and eastern Pacific and wintertime haze variations in southern China[J]. Theoretical and Applied Climatology, 2021, 143(1-2): 349-359.
    [26] LI S, HAN Z, CHEN H. A comparison of the effects of interannual Arctic sea ice loss and ENSO on winter haze days: observational analyses and AGCM simulations[J]. J Meteor Res, 2017, 31(5): 820-833.
    [27] ZHAO S Y, ZHANG H, XIE B. The effects of El Niño-Southern Oscillation on the winter haze pollution of China[J]. Atmos Chem Phys, 2018, 18(3): 1 863-1 877.
    [28] HE C, LIU R, WANG X, et al. How does El Niño-Southern Oscillation modulate the interannual variability of winter haze days over eastern China?[J]. Sci Total Environ, 2019, 651: 1 892-1 902.
    [29] CHANG Y, WANG J, ZHU Z W, et al. A salient oceanic driver for the interannual variability of wintertime haze days over the Pearl River Delta region, China[J]. Theoretical and Applied Climatology, 2020, 140(1): 739-750.
    [30] LIU Q Q, LI C H, GU D J, et al. Impacts of Sea Surface Temperature on the Interannual Variability of Winter Haze Days in Guangdong Province[J]. J Trop Meteor, 2023, 29(2): 168-178.
    [31] MAO L, LIU R, LIAO W, et al. An observation-based perspective of winter haze days in four major polluted regions of China[J]. Natl Sci Rev, 2019, 6(3): 515-523.
    [32] ZHANG X, XU X, DING Y, et al. The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China [J]. Sci China Earth Sci, 2019, 62(12): 1 885-1 902.
    [33] 胡亚旦, 周自江. 中国霾天气的气候特征分析[J]. 气象, 2009, 35(7): 73-78.
    [34] 吴兑, 廖国莲, 邓雪娇, 等. 珠江三角洲霾天气的近地层输送条件研究[J]. 应用气象学报, 2008, 19(1): 1-9.
    [35] 吴兑, 廖碧婷, 吴晟, 等. 2010年广州亚运会期间灰霾天气分析[J]. 环境科学学报, 2012, 32(3) : 521-527.
    [36] 吴兑, 廖碧婷, 陈慧忠, 等. 珠江三角洲地区的灰霾天气研究进展[J]. 气候与环境研究, 2014, 19(2): 248-264.
    [37] 伍红雨, 杜尧东, 何健, 等. 华南霾日和雾日的气候特征及变化[J]. 气象, 2011, 37(5): 608-614.
    [38] 陈训来, 冯业荣, 范绍佳, 等. 离岸型背景风和海陆风对珠江三角洲地区灰霾天气的影响[J]. 大气科学, 2008, 32(3): 530-542.
    [39] KALNAY E, KANAMISTU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77(3): 437-471.
    [40] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597.
    [41] SMITH T M, REYNOLDS R W. Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997)[J]. J Climate, 2003, 16(10): 1 495-1 510.
    [42] SMITH T M, REYNOLDS R W. Improved extended reconstruction of SST (1854-1997)[J]. J Climate, 2004, 17: 2 466-2 477.
    [43] 吴兑, 毕雪岩, 邓雪娇, 等. 珠江三角洲大气灰霾导致能见度下降问题研究[J]. 气象学报, 2006, 64(4): 510-517.
    [44] ZHANG Z, CHAN J, DING Y. Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia[J]. Int J Climatol, 2004, 24: 1 461-1 482.
    [45] YANAI M, ESBENSEN S, CHU J H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets [J] J Atmos Sci, 1973, 30: 611-627.
    [46] 施能. 气象科研与预报中的多元分析方法[J]. 北京: 气象出版社, 2002: 17-18.
    [47] XIE S P, HU K, HAFNER J, et al. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño[J]. J Climate, 2009, 22(3): 730-747.
    [48] YU J H, LI T, TAN ZM, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J]. Climate Dyn, 2016, 46(3): 865-877
    [49] GILL A E. Some simple solutions for heat-induced tropical circulation[J]. Quart J R Meteorol Soc, 1980, 106(449): 447-462.
    [50] ZHU Z W, FENG Y N, JIANG W, et al. The compound impacts of sea surface temperature modes in the Indian and North Atlantic oceans on the extreme precipitation days in the Yangtze River Basin[J]. Climate Dyn, 2023, 61: 3 327-3 341.
    [51] LONG Y, LI J, ZHU Z W, et al. Predictability of the anomaly pattern of summer extreme high-temperature days over southern China[J]. Climate Dyn, 2022, 59: 1 027-1 041.
    [52] HE C. Future Drying Subtropical East Asia in Winter: Mechanism and Observational Constraint[J]. J Climate, 2023, 36(9): 2 985-2 998.
    [53] SUN C, YANG S. Persistent severe drought in southern China during winter-spring 2011: Large-scale circulation patterns and possible impacting factors[J]. J Geophys Res Atmos, 2012, 117(D10): D017500.
    [54] WALLACE J M, GUTELER D S. Teleconnections in the geopotential height field during the northern hemisphere winter[J]. Mon Wea Rev, 1981, 109(4): 784-812.
    [55] BUEH C, NAKAMURA H. Scandinavian pattern and its climatic impact[J]. Quart J Roy Meteor Soc, 2007, 133: 2 117-2 131.
    [56] TAKAYA K, NAKAMURA H. Geographical dependence of upperlevel blocking formation associated with intraseasonal amplification of the Siberian high[J]. J Atmos Sci, 2005, 62(12): 4 441-4 449.
    [57] FU S S, ZHU Z W, LU R. Changes in the factors controlling Northeast Asian spring surface air temperature in the past 60 years[J]. Climate Dyn, 2023, 61: 169-183.
    [58] YOU T, WU R G, HUANG G, et al. Regional meteorological patterns for heavy pollution events in Beijing[J]. J Meteor Res, 2017, 31: 597-611.
    [59] DING Y H, WU P, LIU Y J, et al. Environmental and Dynamic Conditions for the Occurrence of Persistent Haze Events in North China[J]. Engineering, 2017, 3: 266-271.
    [60] GAO H, LI X. Influences of El Niño Southern Oscillation events on haze frequency in eastern China during boreal winters[J]. Int J Climatol, 2015, 35: 2 682-2 688.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  19
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 修回日期:  2024-01-12
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回