Impacts of Sea Surface Temperature on the Interannual Variability of Spring Haze
-
摘要: 利用1979—2018年广东省86站气象观测数据、NCEP再分析资料和ERSST海温资料,采用统计方法分析了年际尺度上热带海温对广东省珠江三角洲(简称珠三角)区域春季灰霾(SHDPRD)的影响。结果表明,东南太平洋海温(ISSTSEP)对SHDPRD起主导作用。低层,当东南太平洋海温异常偏冷时,协同变化效应促使南印度洋海温也异常偏冷,激发冷Kelvin波东传,引起西太平洋Ekman辐合,导致异常气旋环流出现。异常气旋环流东北风通过等熵滑动机制诱发异常下沉运动,减少华南降水。高层,与ISSTSEP有密切相关的是500 hPa正EU遥相关,使得广东温度降低,降水偏少。EU遥相关调控局地气象要素,形成有利于灰霾形成的气象要素条件。反之亦然。受异常环流影响,与珠三角春季灰霾日数紧密联系的是降水、垂直速度和对流稳定度,其次是边界层厚度和低层东北风,最后是水汽。ENSO对SHDPRD有一定的调制作用。在El Niño(La Niña)年春季,珠三角水汽增加(减少),垂直上升(下沉)运动增强,降水增多(减少),广东灰霾偏少(多)。Abstract: The present study analyzed the impact of sea surface temperature (SST) on the interannual variability of spring haze in the Pearl River Delta (SHDPRD) by using daily ground-based observational data from 86 stations of the Guangdong Meteorological Service, along with reanalysis data from the National Centers for Environmental Prediction and the Extended Reconstructed Sea Surface Temperature dataset from the National Centers for Environmental Information for the period 1979—2018. The results show that the SST of the Southeast Pacific (ISSTSEP) played a leading role in the modulation of SHDPRD. Negative (positive) ISSTSEP anomalies stimulated the eastward propagation of cold (warm) Kelvin waves through the Gill forced response, causing Ekman convergence (divergence) in the Western Pacific Ocean and inducing abnormal cyclonic (anticyclonic) circulation. It was closely linked with the positive (negative) Eurasian-Asian teleconnection pattern, which resulted in the temperature and precipitation enhancement (reduction) in the Pearl River Delta and provided favorable local meteorological conditions that were conducive (not conducive) to haze occurrence. The main meteorological conditions playing a role in modulating the SHD PRD were precipitation, vertical velocity, and convective stability, followed by boundary layer thickness and low-level northeasterly winds, and finally moisture. The El Niño-Southern Oscillation in spring had a limited modulating effect on the variation of haze days in the PRD region. During El Ni?o (La Niña) springs, the fewer (more) haze occurrences were related to increased (decreased) moisture, intensified vertical upward (downward) movement, and enhanced (reduced) precipitation.
-
图 8 同图 5,但为El Niño与40年气候场差值分布。
图 9 同图 8,但为La Niña年。
表 1 SHDPRD和局地气象要素的相关系数.
局地气象要素 Shum Omega V850 Δθe PBLH Rain SHDPRD -0.26* 0.33** -0.27* -0.32** 0.28* -0.35** 其中:*为超过95%的置信水平检验,**为超过90%的置信水平检验。
Shum:1 000 hPa比湿;Omega:500 hPa垂直速度;V850:850 hPa经向风;Δθe:对流稳定度;PBLH:边界层高度;Rain:降水。 -
[1] 高歌. 1961~2005年中国霾日气候特征及变化分析[J]. 地理学报, 2008, 63(7): 761-768. [2] 吴兑, 吴晓京, 李菲, 等. 1951~2005年中国大陆霾的时空变化[J]. 气象学报, 2010, 68(5): 680-688. [3] 宋连春, 高荣, 李莹, 等. 1961~2012年中国冬半年霾日数的变化特征及气候成因分析[J]. 气候变化研究进展, 2013, 9(5): 313-318. [4] DING Y H, LIU Y J. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity[J]. Sci China: Earth Sci, 2014, 57: 36-46. [5] 王喜全, 孙明生, 杨婷, 等. 京津冀平原地区灰霾天气的年代变化[J]. 气候与环境研究, 2013, 18(2): 165-170. [6] CHENG X G, ZHAO T L, GONG S L. Implications of East Asian summer and winter monsoons for interannual aerosol variations over central-eastern China[J]. Atmos Environ, 2016, 129: 218-228. [7] CAI W J, LI K, LIAO H, et al. Weather conditions conducive to Beijing severe haze more frequent under climate change[J]. Nat Clim Change, 2017, 7: 257-262. [8] YIN Z C, WANG H J. Role of atmospheric circulation in haze pollution in December 2016[J]. Atmos Chem Phys, 2017, 17(18): 11 673-11 681. [9] WU P, DING Y H, LIU Y J. Atmospheric Circulation and Dynamic Mechanism for Persistent Haze Events in the Beijing-Tianjin-Hebei Region[J]. Adv Atmos Sci, 2017, 34: 429-440. [10] CHEN Y N, ZHU Z W, LUO L, ZHANG J W. Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies[J]. Dyn Atmos Ocean, 2018, 81: 73-83. [11] MU M, ZHANG R H. Addressing the issue of fog and haze: A promising perspective from meteorological science and technology[J]. Sci China: Earth Sci, 2014, 57: 1-2. [12] YIN Z C, WANG H J, GUO W L. Climatic Change features of fog and haze in winter over North China and Huang-Huai Area[J]. Sci China Earth Sci, 2015, 58(8): 1 370-1 376. [13] LI Z Q, ZHANG R H, WANG Y. Interannual variation of the wintertime fog-haze days across central and eastern China and its relation with East Asian winter monsoon[J]. Int J Climatol, 2016, 36(1): 346-354. [14] LIN Pei, YAN Z W, SUN Z B, et al. Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends[J]. Atmos Chem Phys, 2018, 18(5): 3 173-3 183. [15] ZHANG R H, LI Q, ZHANG R N. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013[J]. Sci China: Earth Sci, 2014, 57: 26-35. [16] WANG J, LIU Y J, DING Y H, et al. Impacts of climate anomalies on the interannual and interdecadal variability of autumn and winter haze in North China: a review[J]. Int J Climatol, 2020, 40(10): 4 309-4 325. [17] WANG H J, CHEN H P, LIU J P. Arcitc sea ice decline intensified haze pollution in eastern China[J]. Atmos Ocean Sci Lett, 2015, 8(1): 1-9. [18] ZOU Y F, WANG Y H, ZHANG Y Z, et al. Arictic sea ice, Eurasia snow, and extreme winter haze in China[J]. Sci Adv, 2017, 3(3): e1602751. [19] XU X, ZHAO T, LIU F, et al. Climate modulation of the Tibetan plateau on haze in China[J]. Atmos Chem Phys, 2016, 16(3): 1 365-1 375. [20] YIN Z C, WANG H J. Seasonal prediction of winter haze days in the north central North China Plain[J]. Atmos Chem Phys, 2016, 36(10): 3 479-3 491. [21] GAO Y, CHEN D. A dark October in Beijing 2016[J]. Atmos Ocean Sci Lett, 2017, 10(3): 206-213. [22] WANG J, ZHAO Q H, ZHU Z W, et al. Interannual variation in the number and severity of autumnal haze days in the Beijing-Tianjin-Hebei region and associated atmospheric circulation anomalies[J]. Dyn Atmos Oceans, 2018, 84: 1-9. [23] ZHANG Z, ZHANG X, GONG D, et al. Possible influence of atmospheric circulations on winter haze pollution in the Beijing-TianjinHebei region, northern China[J]. Atmos Chem Phys, 2016, 16: 561-571. [24] WANG J, ZHU Z W, LI Q, et al. Two pathways of how remote SST anomalies drive the interannual variability of autumnal haze days in the Beijing-Tianjin-Hebei region, China[J]. Atmos Chem Phys, 2019, 19: 1 521-1 535. [25] CHENG X G, LIU J, ZHAO T L, et al. A teleconnection between sea surface temperature in the central and eastern Pacific and wintertime haze variations in southern China[J]. Theoretical and Applied Climatology, 2021, 143(1-2): 349-359. [26] LI S, HAN Z, CHEN H. A comparison of the effects of interannual Arctic sea ice loss and ENSO on winter haze days: observational analyses and AGCM simulations[J]. J Meteor Res, 2017, 31(5): 820-833. [27] ZHAO S Y, ZHANG H, XIE B. The effects of El Niño-Southern Oscillation on the winter haze pollution of China[J]. Atmos Chem Phys, 2018, 18(3): 1 863-1 877. [28] HE C, LIU R, WANG X, et al. How does El Niño-Southern Oscillation modulate the interannual variability of winter haze days over eastern China?[J]. Sci Total Environ, 2019, 651: 1 892-1 902. [29] CHANG Y, WANG J, ZHU Z W, et al. A salient oceanic driver for the interannual variability of wintertime haze days over the Pearl River Delta region, China[J]. Theoretical and Applied Climatology, 2020, 140(1): 739-750. [30] LIU Q Q, LI C H, GU D J, et al. Impacts of Sea Surface Temperature on the Interannual Variability of Winter Haze Days in Guangdong Province[J]. J Trop Meteor, 2023, 29(2): 168-178. [31] MAO L, LIU R, LIAO W, et al. An observation-based perspective of winter haze days in four major polluted regions of China[J]. Natl Sci Rev, 2019, 6(3): 515-523. [32] ZHANG X, XU X, DING Y, et al. The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China [J]. Sci China Earth Sci, 2019, 62(12): 1 885-1 902. [33] 胡亚旦, 周自江. 中国霾天气的气候特征分析[J]. 气象, 2009, 35(7): 73-78. [34] 吴兑, 廖国莲, 邓雪娇, 等. 珠江三角洲霾天气的近地层输送条件研究[J]. 应用气象学报, 2008, 19(1): 1-9. [35] 吴兑, 廖碧婷, 吴晟, 等. 2010年广州亚运会期间灰霾天气分析[J]. 环境科学学报, 2012, 32(3) : 521-527. [36] 吴兑, 廖碧婷, 陈慧忠, 等. 珠江三角洲地区的灰霾天气研究进展[J]. 气候与环境研究, 2014, 19(2): 248-264. [37] 伍红雨, 杜尧东, 何健, 等. 华南霾日和雾日的气候特征及变化[J]. 气象, 2011, 37(5): 608-614. [38] 陈训来, 冯业荣, 范绍佳, 等. 离岸型背景风和海陆风对珠江三角洲地区灰霾天气的影响[J]. 大气科学, 2008, 32(3): 530-542. [39] KALNAY E, KANAMISTU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77(3): 437-471. [40] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597. [41] SMITH T M, REYNOLDS R W. Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997)[J]. J Climate, 2003, 16(10): 1 495-1 510. [42] SMITH T M, REYNOLDS R W. Improved extended reconstruction of SST (1854-1997)[J]. J Climate, 2004, 17: 2 466-2 477. [43] 吴兑, 毕雪岩, 邓雪娇, 等. 珠江三角洲大气灰霾导致能见度下降问题研究[J]. 气象学报, 2006, 64(4): 510-517. [44] ZHANG Z, CHAN J, DING Y. Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia[J]. Int J Climatol, 2004, 24: 1 461-1 482. [45] YANAI M, ESBENSEN S, CHU J H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets [J] J Atmos Sci, 1973, 30: 611-627. [46] 施能. 气象科研与预报中的多元分析方法[J]. 北京: 气象出版社, 2002: 17-18. [47] XIE S P, HU K, HAFNER J, et al. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño[J]. J Climate, 2009, 22(3): 730-747. [48] YU J H, LI T, TAN ZM, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J]. Climate Dyn, 2016, 46(3): 865-877 [49] GILL A E. Some simple solutions for heat-induced tropical circulation[J]. Quart J R Meteorol Soc, 1980, 106(449): 447-462. [50] ZHU Z W, FENG Y N, JIANG W, et al. The compound impacts of sea surface temperature modes in the Indian and North Atlantic oceans on the extreme precipitation days in the Yangtze River Basin[J]. Climate Dyn, 2023, 61: 3 327-3 341. [51] LONG Y, LI J, ZHU Z W, et al. Predictability of the anomaly pattern of summer extreme high-temperature days over southern China[J]. Climate Dyn, 2022, 59: 1 027-1 041. [52] HE C. Future Drying Subtropical East Asia in Winter: Mechanism and Observational Constraint[J]. J Climate, 2023, 36(9): 2 985-2 998. [53] SUN C, YANG S. Persistent severe drought in southern China during winter-spring 2011: Large-scale circulation patterns and possible impacting factors[J]. J Geophys Res Atmos, 2012, 117(D10): D017500. [54] WALLACE J M, GUTELER D S. Teleconnections in the geopotential height field during the northern hemisphere winter[J]. Mon Wea Rev, 1981, 109(4): 784-812. [55] BUEH C, NAKAMURA H. Scandinavian pattern and its climatic impact[J]. Quart J Roy Meteor Soc, 2007, 133: 2 117-2 131. [56] TAKAYA K, NAKAMURA H. Geographical dependence of upperlevel blocking formation associated with intraseasonal amplification of the Siberian high[J]. J Atmos Sci, 2005, 62(12): 4 441-4 449. [57] FU S S, ZHU Z W, LU R. Changes in the factors controlling Northeast Asian spring surface air temperature in the past 60 years[J]. Climate Dyn, 2023, 61: 169-183. [58] YOU T, WU R G, HUANG G, et al. Regional meteorological patterns for heavy pollution events in Beijing[J]. J Meteor Res, 2017, 31: 597-611. [59] DING Y H, WU P, LIU Y J, et al. Environmental and Dynamic Conditions for the Occurrence of Persistent Haze Events in North China[J]. Engineering, 2017, 3: 266-271. [60] GAO H, LI X. Influences of El Niño Southern Oscillation events on haze frequency in eastern China during boreal winters[J]. Int J Climatol, 2015, 35: 2 682-2 688.