Application of GNSS/PWV in the Numerical Weather Prediction of a Meiyu Rainstorm
-
摘要: 地基全球导航卫星系统(Global Navigation Satellite System,GNSS)监测大气可降水量(Precipitable Water Vapor,PWV)是一种连续获取大气水汽信息的有效手段,对于区域天气尤其是灾害性天气观测与预报有重要作用。基于长三角GNSS应用示范网,开展GNSS/PWV资料在数值天气预报模式中的三维变分同化应用试验,通过设计5个试验方案对2010年7月的一次梅雨期暴雨进行中尺度分析,考查区域地基GNSS/PWV资料在梅雨期降水过程中对初始场和预报结果的改进能力。通过预报分析表明:本次梅雨期暴雨数值模式预报加入GNSS/PWV的同化方案相比于常规资料同化方案24小时降水预报效果改善超过20%,48小时后也可提高约12%。可见GNSS/PWV资料可以很好改进观测区域内的水汽分布,提供与暴雨天气紧密联系的水汽信息,有效改善了数值天气模式中的中尺度系统移动速度的48小时预报结果,进而提高降水落区预报。Abstract: The monitoring of atmospheric precipitable water vapor (PWV) via the Global Navigation Satellite System (GNSS) is a potent technique for the continuous collection of atmospheric moisture data, which is vital for regional weather observation and forecasting, especially in the context of severe weather events. Based on the GNSS application demonstration network in the Yangtze River Delta, the present study conducted five three-dimensional variational assimilation experiments incorporating GNSS/PWV data in a numerical weather prediction model. The objective was to refine the mesoscale analysis of a Meiyu rainstorm event that occurred in July 2010 and evaluate the potential of regional ground-based GNSS/PWV to enhance the model's initial conditions and predictive accuracy for Meiyu precipitation events. The analysis showed that the assimilation of GNSS/PWV data into the numerical forecast model for this specific Meiyu rainstorm improved the accuracy of 24-hour precipitation forecast by over 20%, with a 12% improvement observed in the 48-hour forecast. These findings suggest that GNSS/PWV data may help effectively refine water vapor distribution in the observation area, provide water vapor information closely related to rainstorm weather, and significantly improve 48-hour forecast accuracy for the movement speed of mesoscale systems in numerical weather models, thereby enhancing precipitation area forecasts.
-
Key words:
- GNSS/PWV /
- data assimilation /
- rapid update cycle /
- Meiyu /
- threat score
-
表 1 数值模式主要参数设置
网格设置 中心经纬度:127 °E,25 °N,分辨率:9 km,维度:265×265×35 微物理过程 WRF Single-Moment 6-class 短波辐射过程 Dudhia 长波辐射过程 RRTM 地表过程 Monin-Obukhov 陆面过程 Noah land-surface model 行星边界层方案 YSU scheme 积云参数化方案 Kain-Fritsch 表 2 数值试验方案介绍
试验序号 试验名称 观测资料 同化时间 Exp1 CTRL 无 无 Exp2 CONV 常规探空、地面观测 2010-07-03_08:00 Exp3 CONV+GNSS/PWV 常规探空、地面观测,GNSS/PWV资料 2010-07-03_08:00 Exp4 CONV+Cycling 常规探空、地面观测 2010-07-03_08:00,2010-07-03_14:00
2010-07-03_20:00,2010-07-04_02:00
2010-07-04_08:00Exp5 CONV+GNSS/PWV+Cycling 常规探空、地面观测,GNSS/PWV资料 2010-07-03_08:00,2010-07-03_14:00
2010-07-03_20:00,2010-07-04_02:00
2010-07-04_08:00表 3 降雨量检验分级
分级检验名称 等级 12小时降水量/mm K0 无降水 < 0.01 K1 小雨 [0.01,5) K2 中雨 [5,15) K3 大雨 [15,30) K4 暴雨及以上 ≥30 -
[1] DAVIS J L, HERRING T A, SHAPIRO I I, et al. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length[J]. Radio Science, 1985, 20(6): 1 593-1 607. [2] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. J Geophys Res: Atmos, 1992, 97(D14): 15 787-15 801. [3] LI H B, WANG X M, CHOY S Y, et al. Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV[J]. Atmos Res, 2022, 265: 105912. [4] 丁金才. GPS气象学及其应用[M]. 北京: 气象出版社, 2009. [5] 王勇, 刘严萍, 柳林涛, 等. 区域GPS网对流层延迟直接推算可降水量研究[J]. 热带气象学报, 2007, 23(5): 510-514. [6] LORENZ E N. A study of the predictability of a 28-variable atmospheric model[J]. Tellus, 1965, 17(3): 321-333. [7] 袁招洪, 丁金才, 陈敏. GPS观测资料应用于中尺度数值预报模式的初步研究[J]. 气象学报, 2004, 62(2): 200-212. [8] XU Y, CHEN X, LIU M, et al. Spatial-temporal relationship study between NWP PWV and precipitation: A case study of'July 20'heavy rainstorm in Zhengzhou[J]. Remote Sens, 2022, 14(15): 3636. [9] 秦大河, 孙鸿烈, 孙枢, 等. 中国气象事业发展战略研究总论卷[M]. 北京: 气象出版社, 2004. [10] BENJAMIN S G, BROWN J M, BRUNET G, et al. 100 years of progress in forecasting and NWP applications[J]. Meteorological Monographs, 2018, 59(1): 1-67. [11] KWON I H, STEPHEN E, WILLIAM B, et al. Assessment of progress and status of data assimilation in numerical weather prediction[J]. Bull Am Meteorol Soc, 2018, 99(5): ES75-ES79. [12] 沈学顺, 王建捷, 李泽椿, 等. 中国数值天气预报的自主创新发展[J]. 气象学报, 2020, 78(3): 451-476. [13] 李昊睿, 丁伟钰, 薛纪善, 等. 广东省GPS/PWV资料的质量控制及其对前汛期降水预报影响的初步研究[J]. 热带气象学报, 2014, 30 (3): 455-462. [14] 贝纯纯, 李昕, 王元, 等. GPS/PWV资料在梅雨锋暴雨个例中的同化试验[J]. 气象科学, 2016, 36(2): 149-157. [15] ROHM W, GUZIKOWSKI J, WILGAN K, et al. 4D-VAR assimilation of GNSS zenith path delays and precipitable water into a numerical weather prediction model WRF[J]. Atmos Meas Tech, 2019, 12 (1): 345-361. [16] GONG Y Z, LIU Z Z, CHAN P W, et al. Assimilating GNSS PWV and radiosonde meteorological profiles to improve the PWV and rainfall forecasting performance from the Weather Research and Forecasting (WRF) model over the South China[J]. Atmos Res, 2023, 286: 106677. [17] SMITH T L, BENJAMIN S G, GUTMAN S I, et al. Impact of GPS water vapor data on RUC severe weather forecasts[C]//21stCon. on Severe Local Storm, San Antonio, TX, Amer Meteor Soc, 2002: J5.3. [18] KING A T, KENNEDY A D. North American supercell environments in atmospheric reanalyses and RUC-2[J]. J Appl Meteorol Climatol, 2019, 58(1): 71-92. [19] 杨显玉, 文军, 牛广山, 等. 西北地区的快速更新循环同化预报系统性能检验和评估[J]. 高原气象, 2020, 39(1): 90-101. [20] 曾明剑, 张备, 周嘉陵, 等. GPS/PWV资料同化在强降水过程中的定量作用评估[J]. 气象科学, 2014, 34(1): 77-86. [21] LI H R, DING W Y, XUE J S, et al. A preliminary study on the quality control method for Guangdong GPS/PWV data and its effects on precipitation forecasts in its annually first raining season[J]. J Trop Meteorol, 2016, 22(4): 535-543. [22] 宋雯雯, 李国平, 王皓. 四川盆地一次强降水过程水汽特征[J]. 气象科技, 2018, 46(1): 129-138. [23] STOYCHEVA A, MANAFOV I, VASSILEVA K, et al. Study of persistent fog in Bulgaria with Sofia Stability Index, GNSS tropospheric products and WRF simulations[J]. J Atmos Sol Terr Phys, 2017, 161: 160-169. [24] BARINDELLI S, REALINI E, VENUTI G, et al. Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers[J]. Earth Planets and Space, 2018, 70(1): 1-18. [25] MA L, GENG F, WUYUN Qigige, et al. Numerical weather prediction in Yangtze River Delta region with assimilation of AWS and GPS/PWV data[C]//IEEE Symposium on Robotics & Applications. Kuala Lumpur, Malaysia, IEEE, 2012. [26] 杜明斌, 尹球, 刘敏, 等. 地基GPS/MET探测水汽等相关参数精度分析[J]. 大气与环境光学学报, 2013, 8(2): 138-145. [27] 杜明斌, 梁宏, 吴春强, 等. GNSS/PWV与风云四号A星GⅡRS水汽廓线融合应用研究[J]. 气象学报, 2022, 80(6): 940-952. [28] 徐渊, 闵锦忠, 庄潇然. 考虑尺度敏感性的长江中下游暖区暴雨初始扰动方案比较分析[J]. 热带气象学报, 2023, 39(3): 386-401. [29] 陈绍河, 郑凤琴, 蔡悦幸, 等. 广西防城港沿海6·16特大暴雨成因及机制探讨[J]. 热带气象学报, 2023, 39(4): 433-442. [30] 张兰, 陈炳洪, 张东, 等. 华南前汛期一次锋前暖区暴雨成因及中尺度对流系统分析[J]. 热带气象学报, 2023, 39(5): 697-710. [31] 赵俊虎, 封国林, 王启光, 等. 2010年我国夏季降水异常气候成因分析及预测[J]. 大气科学, 2011, 35(6): 1 069-1 078. [32] 李慧, 周顺武, 王亚非, 等. 2010年梅雨期间我国东部地区降水异常的成因[J]. 南京信息工程大学学报: 自然科学版, 2014, 6(6): 549-557. 584第4期杜明斌等: GNSS/PWV在一次梅雨期暴雨中的模式预报应用 [33] PARRISH D F, DERBER J C. The National Meteorological Center's spectral statistical-interpolation analysis system[J]. Mon Wea Rev, 1992, 120(8): 1 747-1 763. [34] 王金成, 庄照荣, 韩威, 等. GRAPES全球变分同化背景误差协方差的改进及对分析预报的影响: 背景误差协方差三维结构的估计[J]. 气象学报, 2014, 72(1): 62-78. [35] DESROZIERS G, BERRE L, CHAPNIK B, et al. Diagnosis of observation, background and analysis-error statistics in observation space[J]. Q J R Meteorol Soc, 2005, 131(613): 3 385-3 396. [36] CORDOBA M, DANCE S L, KELLY G A, et al. Diagnosing atmospheric motion vector observation errors for an operational high‐resolution data assimilation system[J]. Q J R Meteorol Soc, 2017, 143(702): 333-341. [37] 仲跻芹, GUO Y R, 张京江. 华北地区地基GPS天顶总延迟观测的质量控制和同化应用研究[J]. 气象学报, 2017, 75(1): 147-164. [38] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 28592-2012降水量等级[S]. 北京: 中国标准出版社, 2012.