Analysis of Dual Polarization and Wind Field Inversion Characteristics of a Heavy Rainstorm in Changsha
-
摘要: 利用S波段双偏振雷达和X波段相控阵雷达对2022年4月25日长沙大暴雨过程进行分析。(1)回波带由东北-西南向带状演变成东-西向带状,差分反射率因子(ZDR)大值区(≥1.0 dB)呈带状分布,列车效应造成长沙大暴雨天气过程。(2)过程对流单体东-西向排列且强回波(≥45 dBZ)扩展至6 km,ZDR、差分相移率(KDP)柱扩展至融化层高度以上;对流单体融化层高度以下ZDR大部分为正值,且底层ZDR、KDP大值区说明雨滴不仅水平直径大且数浓度高,对应雨强大。(3)分钟雨量超过1 mm对应1.7~2.4 °·km-1 KDP值,且出现KDP空洞;分钟雨量超过2 mm对应2.4~3.1 °·km-1 KDP值。(4)三维风场显示强降水期间,带状对流回波前侧、南侧强西南风为大暴雨源源不断输送水汽;较深厚的辐合有利于带状回波维持;弓型回波伴有气旋式风场;高层风场有强辐散。(5)三维风场和强度垂直剖面显示最强降水时段有明显云砧回波,有利的动力抬升和水汽输送使得强回波中心M得以维持;随着中低层逐渐转为西北风或西风,回波减弱、分钟雨量陡降。以上分析结果表明双偏振产品对对流性降雨有明显的指示意义,X波段相控阵雷达反演的三维风场较好地刻画了对流强度及辐合、辐散特征。Abstract: This study aims to help forecasters to apply dual polarization and phased array radar products in the analysis of rainstorm process. The heavy rainstorm in Changsha on April 25, 2022, is analyzed by using S-band dual-polarization radar and X-band phased-array radar. The findings are as follows: (1) The precipitation echo belt changed from a northeast-southwest orientation to an east-west orientation. The high value region(≥1.0 dB) of difference reflectance factor (ZDR) showed zonal distribution, and the train effect caused the heavy rain in Changsha. (2) Multiple convective cells were arranged in an east-west direction and extended to a height of 6km. The expansion of ZDR and KDP columns above the height of the melting layer indicated that strong upward airflow provided favorable conditions for water droplets to break through the melting layer and form supercooled water droplets. Below the height of the melting layer of convective cells, most ZDR values were positive, with noticeable high values of ZDR and KDP in the bottom layer. This indicated large horizontal raindrop diameters and high number concentrations, corresponding to strong rainfall. (3) When minute rainfall exceeded 1 m, KDP ranged from 1.7 ° to 2.4 ° · km-1, and KDP cavities appeared. When minute rainfall exceeded 2 mm, KDP ranged from 2.4 ° to 3.1 ° · km-1. (4) The three-dimensional wind field of phased-array radar inversion showed that during the heavy precipitation, strong southwest wind in front and south of the zonal precipitation echo carried water vapor, contributing to the heavy rain process. The deep shear line facilitated the maintenance of banded echo, with a strong bow echo accompanied by cyclonic wind fields and strong divergence in the upper wind field. Guided by the airflow, the banded echo continuously passed through Changsha, forming the train effect. (5) The vertical section of three-dimensional wind field and intensity showed distinct anvil-shaped echoes during the heaviest precipitation period. The strong echo center was influenced by power lift and water vapor transport conditions. As winds changed to the northwest or west at mid-low levels, the echo gradually weakened, and minute rainfall decreased sharply. The above analysis indicates that dual polarization products can help indicate convective rainfall, and the three-dimensional wind field retrieved by X-band phased array radar effectively depicts the characteristics of convective intensity, convergence, and divergence.
-
Key words:
- heavy rain /
- dual-polarization radar /
- phased-array radar /
- train effect /
- ZDR /
- KDP
-
图 5 2022年4月25日双偏振雷达16:16 ZH(a)、KDP(b)、ZDR(c)、HCL(d)垂直剖面图
剖面点为图 4b MN所在位置,红色线为融化层高度所在位置。
表 1 长沙相控阵阵列天气雷达系统主要性能指标
项目 参数指标 天线形式 波导缝隙阵列天线 天线类型 相控阵阵列天线 天线尺寸 1 450 mm×1 460 mm 工作频率 9.3~9.5 GHz 体扫模式 方位:0~360 °、俯仰:0~90 ° 波束宽度 方位1.6 °、俯仰1.6 ° 天线增益 ≥39 dB 极化方式 单极化 脉冲重复频率 400~4 000 MHz 峰值功率 ≥320 W 探测距离 ≥60 km 距离分辨率 ≤30 m 灵敏度 -110 dBm(MHz) 噪声系数 ≤3 dB 表 2 2022年4月25日长沙站探空环境物理量
时间 Q(/g·kg-1) CAPE/(J·kg-1) K/℃ BLI/℃ SI/℃ LCL/m 0~5 km VWS/(m·s-1) 0 ℃层高度/m 700 hPa 850 hPa 925 hPa 08时 9 14 16 536.538.7 -2.5 -1.64 238.8 12.5 4 403.6 -
[1] 俞小鼎, 王秀明, 李万莉, 等. 雷暴与强对流临近预报[M]. 北京: 气象出版社, 2020: 57-63. [2] 张红梅, 张深寿, 连晨方. 福建西南部一次特大暴雨的双偏振雷达特征分析[J]. 气象与环境科学, 2021, 4(2): 16-24. [3] 潘佳文, 蒋璐璐, 魏鸣, 等. 一次强降水超级单体的双偏振雷达观测分析[J]. 气象学报, 2020, 78(1): 86-100. [4] 冯晋勤, 汤达章, 俞小鼎, 等. 新一代天气雷达中气旋识别产品的统计分析[J]. 气象, 2010, 36(8): 47-52. [5] 马舒庆, 陈洪滨, 王国荣, 等. 阵列天气雷达设计与初步实现[J]. 应用气象学报, 2019, 30(1): 1-12. [6] 吴翀, 刘黎平, 汪旭东, 等. 相控阵雷达扫描方式对回波强度测量的影响[J]. 应用气象学报, 2014, 25(4): 406-414. [7] 刘黎平, 吴挪, 汪旭东, 等. X波段一维扫描有源相控阵天气雷达测试定标方法[J]. 应用气象学报, 2015, 26(2): 129-140. [8] 于明慧, 刘黎平, 吴挪, 等. 利用相控阵及双偏振雷达对2016年6月3日华南一次强对流过程的分析[J]. 气象, 2019, 45(3): 330-344. [9] 程元慧, 傅佩玲, 胡东明, 等. 广州相控阵天气雷达组网方案设计及其观测试验[J]. 气象, 2020, 46(6): 823-836. [10] 叶开, 杨玲, 马舒庆, 等. 阵列天气雷达高分辨率强度场融合方法研究[J]. 气象, 2020, 46(8): 1 065-1 073. [11] 张羽, 陈炳洪, 曾琳, 等. 基于X波段双偏振相控阵雷达的超级单体风暴观测分析[J]. 热带气象学报, 2023, 39(2): 218-229. [12] SHAPIRO A, POTVIN C K, GAO J D. Use of a vertical vorticity equation in variational Doppler wind analysis[J]. Atoms Ocean Technol, 2019, 26(10): 2 089-2 106. [13] POTVIN C K, SHAPIRO A, XU EM, Impact of a vertical vorticity constraint in variation Doppler wind analysis[J]. Atoms Ocean Technol, 2012, 29(1): 32-49. [14] NORTH K W, OUE M, KOLLIAS et al Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E[J]. Atmospheric Measurement Techniques, 2017, 10(8): 2 785-2 806. [15] 李渝, 马舒庆, 杨玲, 等. 长沙机场阵列天气雷达风场验证[J]. 应用气象学报, 2020, 31(6): 681-693. [16] 俞小鼎, 王秀明, 李万莉, 等. 雷暴和强对流临近预报[M]. 北京: 气象出版社, 2020: 67-99 [17] 潘志祥, 刘爱鸣, 林毅, 等. 湖南省天气预报技术手册[M]. 北京: 气象出版社, 2015. [18] 程周杰, 刘宪勋, 朱亚平. 双偏振雷达对一次水凝物相态演变过程的分析[J]. 应用气象学报, 2009, 20(5): 594-601. [19] 孙炜文, 王璇, 肖潇. 江西一次冰雹过程的S波段双偏振雷达回波特征分析[J]. 暴雨灾害, 2022, 41(6): 621-630. [20] 陈龙, 唐明晖, 唐佳, 等. 2021年春湖南东北部降雹超级单体的双偏振雷达回波特征[J]. 暴雨灾害, 2023, 42(2): 211-222. [21] 张杰, 田密, 朱克云, 等. 双偏振雷达基本产品和回波分析[J]. 高原山地气象研究, 2010, 30(2): 36-41. [22] 孙丝雨, 沈永海, 霍苗, 等. 双线偏振雷达在一次强降雹过程中的初步应用[J]. 暴雨灾害, 2013, 32(3): 249-255. [23] 杨立洪, 刘小燕, 陈玉华. 双偏振雷达相关参数的产品分析[J]. 广东气象, 2017, 39(3): 69-72. [24] 郑佳锋, 张杰, 朱克云, 等. 双偏振天气雷达测雨误差及水凝物识别分析[J]. 气象科技, 2014, 42(3): 364-372. [25] PARK H S, RYZHKOV A V, ZRNIC D S, e tal. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS[J]. Wea Forecasting, 2009, 24 (3): 730-748. [26] 李军霞, 李培仁, 汤达章, 等. 中小尺度的多普勒径向速度场特征分析[J]. 气象科学, 2007, 27(5): 557-563. [27] 王艳兰, 汤达章, 唐伍斌, 等. 多普勒雷达径向散度与度与强对流回波变化特征分析[J]. 热带气象学报, 2007, 23(6): 659-663. [28] 刘黎平, 吴林林, 吴翀, 等. X波段相控阵天气雷达对流过程观测外场试验及初步结果分析[J]. 大气科学, 2014, 38(6): 1 079-1 094. [29] 俞小鼎, 张爱民, 郑媛媛, 等. 一次系列下击暴流事件的多普勒天气雷达分析[J]. 应用气象学报, 2006, 17(4): 385-393.