Analysis of the Enhancement Mechanism of a Strong Squall Line in July 2022 in Suzhou
-
摘要: 针对2022年7月26日发生在江苏南部的一次由强飑线引起的大范围极端雷暴大风天气,利用双偏振雷达、再分析数据、探空、地面自动站、风廓线、微波辐射计等资料分析产生飑线的天气形势背景和飑线在移过太湖附近突然增强的原因。(1) 低空急流向下传播形成超低空急流,增强的中层干冷空气卷入,随下沉气流到达地面形成出流,加强了地面辐合,使飑线形成组织化。(2) 飑线东移过程中的强降水导致其冷池不断增强,在飑线内部形成次级环流,加强了后侧入流,使飑线进一步发展。(3) 由于湖面摩擦系数大大减小,强飑线经过光滑的太湖湖面移动速度大幅增加;冷湖效应、湖陆温差等机制使得飑线在经过太湖湖面时对流强度维持和增强;同时飑线过境湖面时水汽得到补充,多种作用叠加造成了地面12级强风。Abstract: This study examined the circulation patterns and factors contributing to the sudden intensification of a squall line near Taihu Lake during a large-scale extreme thunderstorm and gale event in southern Jiangsu Province on July 26, 2022. The analysis was based on data from dual-polarization radar, reanalysis data, radiosonde, automatic ground station, wind profile data, and microwave radiometer. The results showed that: (1) The downward propagation of a low-level jet resulted in the formation of an ultralow-level jet, which enhanced the influx of dry and cold air in the middle layer. This led to the formation of an outflow with sinking airflow reaching the ground, intensifying ground convergence and further developing the squall line. (2) The strong precipitation during the eastward movement of the squall line led to the continuous strengthening of its cold pool, leading to a secondary circulation inside the squall line, strengthening the rear inflow, and further developing the squall line. (3) The reduced friction coefficient of the lake surface significantly increased the speed of the strong squall line passing over the Lake. The cold lake effect and temperature difference between the lake and land maintained and the convective intensity increased as the squall line passed over Taihu Lake. The passage of the squall line over the lake surface replenished water vapor and these effects jointly led to a level 12 strong wind on the ground.
-
Key words:
- squall line /
- rear inflow /
- cold pool /
- Taihu Lake
-
表 1 26日12—16时江苏南部11级以上大风出现站点和时间
极大风 出现站点 出现时间 36.8 m·s-1(12级) 苏州胥口镇 14:34 35.5 m·s-1(12级) 苏州太湖小雷山 14:08 33.5 m·s-1(12级) 扬州汊河街道 13:11 33.4 m·s-1(12级) 苏州吴江区小雷山东南 14:23 32.0 m·s-1(11级) 苏州太仓浮桥 15:46 31.5 m·s-1(11级) 常州朱林镇唐王村 13:43 30.4 m·s-1(11级) 南通三星镇德胜 16:06 30.2 m·s-1(11级) 苏州竹山岛西 14:26 29.9 m·s-1(11级) 苏州东太湖 14:30 29.4 m·s-1(11级) 常州天目湖镇牛头山 13:23 29.7 m·s-1(11级) 苏州沙溪归庄 15:36 29.2 m·s-1(11级) 扬州征洲海事 13:28 28.5 m·s-1(11级) 苏州阳澄湖 15:11 -
[1] SCHMIDT J M, COTTON W R. A high plains squall line associated with severe surface winds[J]. J Atmos Sci, 1989, 46(3): 281-302. [2] PETERS J M, NOWOTARSKI C J, MORRISON H. The role of vertical wind shear in modulating maximum supercell updraft velocities[J]. J Atmos Sci, 2019, 76(10): 3 169-3 189. [3] TAKEMI T, SATOMURA T. Numerial experiments on the mechanisms for the development and maintenance of long-lived squall lines in dry environments[J]. J Atmos Sci, 2000, 57(11): 1 718-1 740. [4] MENG Z Y, ZHANG F Q, MARKOWSKI P, et al. A Modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China[J]. J Atmos Sci, 2012, 69(4): 1 182-1 207. [5] MENG Z Y, YAN D C, ZHANG Y J. General features of squall lines in East China[J]. Mon Wea Rev, 2013, 141(5): 1 629-1 647. [6] 陈明轩, 王迎春. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J]. 气象学报, 2012, 70(3): 371-386. [7] FRENCH A J, PARKER M D. Numerical simulations of bow echo formation following a squall line-supercell merger[J]. Mon Wea Rev, 2014, 142(12): 4 791-4 822. [8] 潘玉洁, 赵坤, 潘益农, 等. 用双多普勒雷达分析华南一次飑线系统的中尺度结构特征[J]. 气象学报, 2012, 70(4): 736-751. [9] WU M W, LUO Y L. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015[J]. J Meteor Res, 2016, 30(5): 719-736. [10] CHEN X C, ZHANG F Q, ZHAO K. Diurnal variations of the land-sea breeze and its related precipitation over South China[J]. J Atmos Sci, 2016, 73(12): 4 793-4 815. [11] ZHOU A, ZHAO K, LEE W C, et al. VDRAS and polarimetric radar investigation of a bow echo formation after a squall line merged with a preline convective cell[J]. J Geophys Res Atmos, 2020, 125(7): e2019JD031719. [12] 雷蕾, 孙继松, 陈明轩, 等. 北京地区一次飑线的组织化过程及热动力结构特征[J]. 大气科学, 2021, 45(2): 287-299. [13] 梁俊平, 张一平. 2013年8月河南三次西南气流型强对流天气分析[J]. 气象, 2015, 41(11): 1 328-1 340. [14] 农孟松, 翟丽萍, 屈梅芳, 等. 广西一次飑线大风天气的成因和预警分析[J]. 气象, 2014, 40(12): 1 491-1 499. [15] 刘莲, 王迎春, 陈明轩. 京津冀一次飑线过程的精细时空演变特征分析[J]. 气象, 2015, 41(12): 1 433-1 446. [16] 吴瑞姣, 黎玥君, 林永辉. 2013年春季一次强飑线过程中尺度特征研究[J]. 热带气象学报, 2023, 39(4): 522-535. [17] 邢峰华, 黄彦彬, 李光伟, 等. 海南岛一次强飑线系统演变的双偏振特征分析[J]. 热带气象学报, 2023, 39(5): 742-750. [18] 曾琳, 张羽, 李怀宇, 等. 基于多源探测资料的一次广州局地强对流垂直结构分析[J]. 热带气象学报, 2023, 39(3): 348-360. [19] 支树林, 许爱华, 张娟娟, 等. 一次影响江西的致灾性飑线天气成因分析[J]. 暴雨灾害, 2015, 34(4): 352-359. [20] 竹利, 陈朝平, 陈茂强, 等. 川北飑线成熟阶段灾害性大风成因个例分析[J]. 暴雨灾害, 2018, 37(2): 164-173. [21] 张弛, 支树林, 许爱华. 2013年湖南首场致灾性强对流天气过程成因分析[J]. 暴雨灾害, 2019, 38(2): 135-143. [22] 王秀明, 俞小鼎, 周小刚, 等. "6.3"区域致灾雷暴大风形成及维持原因分析[J]. 高原气象, 2012, 31(2): 504-514. [23] 聂云, 周继先, 李习瑾, 等. 贵州一次暖区飑线过程的环境条件和结构特征[J]. 干旱气象, 2020, 38(5): 782-793. [24] 雷蕾, 孙继松, 陈明轩, 等. 北京地区一次飑线的组织化过程及热动力结构特征[J]. 大气科学, 2021, 45(2): 287−299. [25] 万夫敬, 孙继松, 孙敏, 等. 山东半岛海风锋在一次飑线系统演变过程中的作用[J]. 气象学报, 2021, 79(5): 717-731. [26] 杨晓亮, 杨敏, 隆璘雪, 等. 冷涡背景下河北雷暴大风环境条件与对流风暴演变个例分析[J]. 暴雨灾害, 2020, 39(1): 52-62. [27] 刁秀广, 郭飞燕. 2019年8月16日诸城超级单体风暴双偏振参量结构特征分析[J]. 气象学报, 2021, 79(2): 181-195. [28] 王莎, 李彦, 黄强, 等. 太湖地区湖陆风三维结构数值模拟分析[J]. 农业与技术, 2019, 39(13): 29-30. [29] 张建军, 王咏青, 钟玮. 飑线组织化过程对环境垂直风切变和水汽的响应[J]. 大气科学, 2016, 40(4): 689-702. [30] 林小红, 范能柱, 蔡义勇, 等. "利奇马"(2019)台前飑线过程演变和异常特征分析[J]. 暴雨灾害, 2022, 41(2): 192-203. [31] 竹利, 卢德全, 廖文超, 等. 连续两次飑线大风成因对比分析[J]. 干旱气象, 2021, 39(5): 796-806. [32] 钱维宏. 夏季苏北冷湖效应对飑线影响的一个数值模拟研究[J]. 气象科学, 1987(2): 56-65. [33] LI B, WU L G. Numerical study of effects of mountains and lakes on a squall line in northern Jiangsu Province[J]. Meteor Atmos Phys, 2020, 132(5): 781-791. [34] 李哲, 高艳红, 蒋盈沙, 等. 城市与湖泊对华东地区一次切变线暴雨过程的影响[J]. 高原气象, 2022, 41(3): 655-670.