Research on the Estimation of Tropical Cyclone Gale Radius Based on a Fusion TC-WREM Model
-
摘要: 利用2001—2020年美国联合台风警报中心(JTWC)热带气旋(Tropical Cyclone,TC)最佳资料数据集和静止气象卫星云图,建立了基于多层感知器神经网络模型(Multi-Layer Perceptron,MLP)和卷积神经网络(Convolutional Neural Network,CNN)融合的TC大风半径估算模型(TC Wind Radii Estimation Model,TCWREM)。该模型利用MLP和CNN分别对TC属性数据和卫星云图中与TC大风半径相关联的核心特征进行预提取,最终通过融合TC-WREM模型开展大风半径估算。融合的TC-WREM模型能实现对TC属性数据和卫星云图底层特征的深度客观挖掘,较单独的MLP和CNN模型的估算误差降低7%~24%。以TC近地面8级大风半径(R8)估算为例,针对2021年台风“烟花”的独立样本估算检验显示分象限R8估算平均绝对误差(Mean Absolute Error,MAE)分别为39、33、40和51 km,均值为41 km,误差中位值约40 km,优于业务估算精度(为大风半径的25%~40%)及西北太平洋和大西洋同类研究估算结果。由于融合TC-WREM模型的输入为易获取的TC属性数据和静止气象卫星云图,因此该模型易于在业务中进行推广,从而可改善国内TC大风半径估算模型缺乏的现状。
-
关键词:
- 热带气旋 /
- 大风半径估算 /
- 卷积神经网络模型 /
- 多层感知器神经网络模型 /
- 融合TC-WREM模型 /
- 西北太平洋
Abstract: In this paper, a fusion TC Wind Radii Estimation Model (TC-WREM) that combines a MultiLayer Perceptron net (MLP) and a Convolutional Neural Network (CNN) is established by using the Tropical Cyclone (TC) best track data set and the static satellite cloud images. This model utilizes MLP and CNN to pre-extract the core features associated with TC wind radius from TC attribute data and satellite cloud images and ultimately performs gale wind radius estimation. The fused TC-WREM model in this study can achieve deep and objective mining of TC attribute data and underlying features of satellite cloud images, whose estimation error is reduced by about 7%-24% compared to individual MLP and CNN models. Taking the estimation of 17.2 m ·s-1 wind radius of TC In-fa in 2021 as an example, the fused TCWREM model has higher estimation accuracy than the independent MLP and CNN model. Independent sample testing shows that the mean absolute estimation error in 4 quadrants is 39, 33, 40, and 51 km, respectively, with an average of 41 km, respectively, which is superior to that of other similar research. The fused TC-WREM model is advantageous due to its utilization of easily obtainable TC attribute information and geostationary meteorological satellite cloud images as inputs. This makes it suitable for operational use and addresses the current lack of domestic TC gale radius estimation models. -
表 1 TC匹配记录属性数据
序号 标识(时间-名称) 月份 东经/°E 北纬/°N 最大风速/(m·s-1) 最低气压/hPa NE/km SE/km SW/km NW/km 1 2001072200- 7 150.3 25.0 20.56 994 111 111 111 111 2 2001072206- 7 149.6 25.2 23.13 991 120 120 120 120 3 2001072212- 7 149.0 25.4 25.7 987 111 93 93 111 …… …… …… …… …… …… …… …… …… …… …… 7 587 2020111418-VAMCO 11 107.9 17.1 43.69 975 259 157 176 278 7 588 2020111500-VAMCO 11 107.6 7.1 38.55 983 204 130 102 213 7 589 2020111512-VAMCO 11 105.7 18.4 20.56 996 65 37 46 83 表 2 不同模型对R8各象限的估算性能
估算模型 MAPE/% AEA/% NE SE SW NW NE SE SW NW CNN 0.308 0.246 0.279 0.294 69.22 75.43 72.14 71.62 MLP 0.222 0.185 0.226 0.285 77.83 81.50 77.32 71.50 TC-WREM 0.211 0.167 0.193 0.283 79.17 84.24 81.72 71.71 -
[1] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京: 科学出版社, 1979. [2] COCKS S B, GRAY W M. Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting[J]. Mon Wea Rev, 2002, 130(8): 1 989-2 005. [3] GUO X, TAN Z M. Tropical cyclone fullness: a new concept for interpreting storm intensity[J]. Geophysi Res Lett, 2017, 44(9): 4 324-4 331. [4] ZHUO J Y, TAN Z M. Physics-augmented deep learning to improve tropical cyclone intensity and size estimation from satellite imagery[J]. Mon Wea Rev, 2021, 149(7): 2 097-2 113. [5] DEMUTH J L, DEMARIA M, KNAFF J A, et al. Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms[J]. J Appl Meteor Climatol, 2004, 43(2): 282-296. [6] DEMUTH J L, DEMARIALM, et al. Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms[J]. J Appl Meteor Climatol, 2006, 45(11): 1 573-1 581. [7] DVORAK. Tropical cyclone intensity analysis and forecasting from satellite imagery[J]. AMS Journals, 1975, 103(5): 420-430 [8] DVORAK V F. Tropical cyclone intensity analysis using satellite data. National Oceanic and Atmospheric Administrator[R]. NOAA Technical Report NESDIS 11, September 1984. NOAA--S/T 84-232. cover page4. Includes, bibliographical references (pages 46-47). [9] KNAFF J A, DEMARIA M, MOLENAR D A, et al. An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis[J]. J Appl Meteor Climatol, 2011, 50(10): 2 149-2 166. [10] KNAFF J A, LONGMOE S P, MOLENAR D A. An objective satellite-based tropical cyclone size climatology[J]. J Climate, 2014, 27(1): 455-476. [11] KNAFF J A, SAMPSON C R. After a decade are Atlantic tropical cyclone gale force wind radii forecasts now skillful? [J]. Wea And Forecasting, 2015, 30(3): 702-709. [12] KNAFF J A, SLOCUM C J, MUSGRAVE K D, et al. Using routinely available information to estimate tropical cyclone wind structure [J]. Mon Wea Rev, 2016, 144(4): 1 233-1 247. [13] KOSSIN J P, KNAFF J A, BERGER H I, et al. Estimating hurricane wind structure in the absence of aircraft reconnaissance[J]. Wea Forecasting, 2007, 22(1): 89-101. [14] LU X Q, YU H, YANG X M, et al. Estimating tropical cyclone size in the Northwestern Pacific from geostationary satellite infrared images [J]. Remote Sensing, 2017, 9(7): 728. [15] LU X Q, WONG W K, YU H, et al. Tropical cyclone size identification over the Western North Pacific using support vector machine and general regression neural network[J]. J Meteor Soc Japan SerII, 2022, 100(6): 927-941. [16] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Fleet D, Pajdla T, Schiele B, et al. Computer VisionECCV 2014, Cham: Springer. [17] MATSUYU M, MORI K, MITARI Y, et al. Subject independent facial expression recognition with robust face detection using a convolutional neural network [J]. Neural Networks, 2003, 16(5-6): 555-559. [18] SAMPSON C R, FLLKADA E M, KNAFF J A, et al. Tropical cyclone gale wind radii estimates for the Western North Pacific[J]. Wea Forecasting, 2017, 32(3): 1 029-1 040.