Cause Analysis of an Extreme Gale Event with a Bow Echo in Southern Shandong Under the Background of a Cold Vortex
-
摘要: 2020年5月17日傍晚到夜间,山东南部发生了一次罕见的极大风速超过12级并伴有大冰雹的弓形回波天气过程。为提高对弓形回波造成极端大风环境条件以及风暴结构特征、演变机制的认识,基于常规观测资料、地面加密自动气象站观测资料、多普勒雷达资料和ERA5再分析资料,分析了此次极端大风的成因。结果表明:华北冷涡后部横槽转竖引导冷空气南下,增强了对流层中、低层风垂直切变,促进了位势不稳定的发展,为产生强对流天气提供了有利的环境条件。中层干冷空气的侵入以及低层温度层结曲线接近平行于干绝热线有利于雷暴大风的形成。初始对流在850 hPa切变线与地面辐合线重合附近触发。大风指数(WINDEX)计算的地面最大风速的潜势与观测的地面极大风较接近。弓形回波具有显著的回波悬垂、弱回波区、强后侧入流等结构特征。强的后侧入流和对流层中层异常干的环境利于形成强下沉气流,极端大风发生在弓形回波凸起位置。冷池加强伴随风暴后侧入流急流的发展,对形成弓形回波和地面大风有直接影响。地面小尺度冷池造成的加压和天气尺度低压造成的减压形成变压风。变压风与冷池密度流相叠加增强了地面大风的强度。地面极端大风是冷池密度流、后侧入流急流和动量下传共同作用的结果。Abstract: On the night of May 17, 2020, an extreme gale event with a rare strong bow echo, large hail, and extreme wind speed exceeding 12 on the Beaufort scale, was recorded in southern Shandong Province, China. To improve the understanding of the environmental conditions of such extreme gales, the present study analyzed the characteristics of storm structure and the mechanism of evolution by using ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts, and data from conventional observation, ground automatic weather station intensive observation, and Doppler radar. The results indicate that the transverse trough at the rear of the North China cold vortex turned vertical to guide the cold air southward, which enhanced the vertical shear of mid- and low-level tropospheric winds, promoted the development of potential instability, and provided favorable environmental conditions for the generation of strong convective weather. The invasion of dry and cold air in the mid-level and the lowlevel temperature stratification curve being nearly parallel to the dry adiabatic line were conducive to the formation of thunderstorm gales. The initial convection was triggered near the place where the 850 hPa shear line coincided with the surface convergence line. The potential of the maximum ground wind speed calculated by using WINDEX (an index for forecasting microburst potential) was closer to the observed surface extreme wind speed. The bow echo had significant structural features such as echo overhang, weak echo region, and strong rear inflow. The strong rear inflow and abnormally dry mid-troposphere conditions were conducive to the formation of strong downdrafts, with extreme gale occurring at the place corresponding to the convex part of the bow echo. The strengthening of the cold pool was accompanied by the development of the inflow jet behind the storm, which had a direct impact on the formation of the bow echo and surface extreme gale. Pressurization due to the small-scale cold pool at the land surface and depressurization due to synoptic scale cyclones led to isallobaric winds. The superposition of isallobaric wind and cold pool density flow enhanced the intensity of surface extreme gale. The surface extreme gale was the result of the combined influence of cold pool density flow, rear inflow jet, and downward momentum transportation.
-
Key words:
- extreme gale /
- bow echo /
- cold pool /
- momentum transportation downward
-
表 1 2020年5月17日20时徐州站探空要素
时间 对流有效位能/(J·kg-1) 700~400 hPa平均温度露点差/℃ 925 hPa温度露点差/℃ 925 hPa比湿/kg-1 大气可降水量/mm 500 hPa与850 hPa温度差/℃ 2020年5月17日20:00 3 361.6 19.3 10 13.14 31 34 时间 对流抑制能量/(J·kg-1) 0 ℃层高度/m -20 ℃层高度/m 融化层高度/m 抬升凝结高度/hPa 自由对流高度/hPa 对流上限/hPa 2020年5月17日20:00 -91.1 4 053 6 869 3 200 833 763 173 表 2 对流风暴过境前后地面自动站气象要素变率
站名 气温降幅/(10 ℃·(10 min)-1) 露点降幅/(10 ℃·(10 min)-1) 气压升幅/(hPa·(15 min)-1) 大风强度/(m·s-1) 大风时间/(北京时) 雷暴高压强度/hPa 费县 6.4 2.8 3.5 18.6 (9级) 20:51 996.4 临沂 10.1 2.7 4.5 34.6 (12级) 21:27 998.4 -
[1] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法(第四版)[M]. 北京: 气象出版社, 2000. [2] MENG Z Y, YAN D C, ZHANG Y J. General features of squall lines in East China[J]. Mon Wea Rev, 2013, 141(5): 1 629-1 647. [3] 公衍铎, 郑永光, 罗琪. 冷涡底部一次弓状强飑线的演变和机理[J]. 气象, 2019, 45(4): 483-495. [4] 罗琪, 郑永光, 陈敏. 2017年北京北部一次罕见强弓状飑线过程演变和机理[J]. 气象学报, 2019, 77(3): 371-386. [5] 俞小鼎, 王秀明, 李万莉, 等. 雷暴与强对流临近预报[M]. 北京: 气象出版社, 2020. [6] 王秀明, 俞小鼎, 周小刚, 等. "6.3"区域致灾雷暴大风形成及维持原因分析[J]. 高原气象, 2012, 31(2): 504-514. [7] 吴瑞姣, 黎玥君, 林永辉. 2013年春季一次强飑线过程中尺度特征研究[J]. 热带气象学报, 2023, 39(4): 522-535. [8] ATKINS N T, BOUCHARD C S, PRZYBYLINSKI R W, et al. Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX[J]. Mon Wea Rev, 2005, 133 (8): 2 275-2 295. [9] 王艳兰, 王娟, 伍静, 等. 桂林市2019年"3.21"极端大风与"4.24"致灾冰雹过程特征对比分析[J]. 热带气象学报, 2021, 37(2): 175-185. [10] KLIMOWSKI B A, HJELMFELT M R, BUNKERS M J. Radar observations of the early evolution of bow echoes[J]. Wea Forecasting, 2004, 19(4): 727-734. [11] WAKIMOTO R M, MURPHEY H V, DAVIS C A, et al. High winds generated by bow echoes. Part Ⅱ: The relationship between the mesovortices and damaging straight line winds[J]. Mon Wea Rev, 2006, 134 (10): 2 813-2 829. [12] BLUESTEIN H B, JAIN M H. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring[J]. J Atmos Sci, 1985, 42(16): 1 711-1 732. [13] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(10): 3 413-3 436. [14] MENG Z, ZHANG F, MARKOWSKI P, et al. A modeling study on the development of bowing structure and associated rear inflow within a squall line over South China[J]. J Atmos Sci, 2012, 69: 1 182-1 207. [15] WEISMAN M L, KLEMP J B, ROTUNNO R. Structure and evolution of numerically simulated squall lines[J]. J Atmos Sci, 1988, 45(14): 1 990-2 013. [16] FUJITA T T, WAKIMOTO R M. Five scales of airflow associated with a series of downbursts on 16 July 1980[J]. Mon Wea Rev, 1981, 109(7): 1 438-1 456. [17] 雷蕾, 孙继松, 陈明轩, 等. 北京地区一次飑线的组织化过程及热动力结构特征[J]. 大气科学, 2021, 45(2): 287−299. [18] 彭霞云, 章丽娜, 刘汉华, 等. 冷涡底部对流引起的杭州湾极端大风形成机制分析[J]. 气象, 2022, 48(6): 719-728. [19] 沈杭锋, 方桃妮, 蓝俊倩, 等. 一次强飑线过程极端大风的中尺度分析[J]. 气象学报, 2019, 77(5): 806-822. [20] 许长义, 章丽娜, 肖现, 等. 冷涡背景下华北平原一次弓形回波致灾大风过程分析[J]. 气象学报, 2023, 81(1): 40-57. [21] 吴芳芳, 俞小鼎, 王慧, 等. 一次黄海之滨中尺度对流复合体多尺度结构特征观测研究[J]. 气象学报, 2019, 77(5): 785-805. [22] 李永军, 陈科艺. 一次攀西地区飑线天气过程形成机制分析[J]. 气象科技, 2019, 47(6): 997-1 005. [23] 张桂莲, 赵艳丽, 黄晓璐, 等. "9.24"内蒙古东南部致灾飑线过程成因分析[J]. 暴雨灾害, 2019, 38(1): 41-47. [24] FUJITA T T. Manual of downburst identification for project Nimrod. Satellite and Meso meteorology Research[M]. Paper No. 156, Dept of Geophysical Sciences, University of Chicago, 1978. [25] 侯淑梅, 李昱薇, 张鹏, 等. "4·29"山东近海10级以上雷暴大风的成因分析[J]. 气象, 2022, 48(10): 1 242-1 256. [26] 陶岚, 袁招洪, 戴建华, 等. 一次夜间弓形回波特征分析. 气象学报, 2014, 72(2): 220-236. [27] 俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展[J]. 气象学报, 2012, 70(3): 311-337. [28] 万夫敬, 孙继松, 孙敏, 等. 山东半岛海风锋在一次飑线系统演变过程中的作用[J]. 气象学报, 2021, 79(5): 1-15. [29] 阎丽风, 杨成芳. 山东省灾害性天气预报技术手册[M]. 北京: 气象出版社, 2014. [30] 冯桂力, 王俊, 牟容, 等. 一次中尺度雷暴大风过程的闪电特征分析[J]. 气象, 2010, 36(4): 68-74. [31] 孙虎林, 罗亚丽, 张人禾, 等. 2009年6月3-4日黄淮地区强飑线成熟阶段特征分析[J]. 大气科学, 2011, 35(1): 105-120. [32] 张桂莲, 赵艳丽, 黄晓璐, 等. "9.24"内蒙古东南部致灾飑线过程成因分析[J]. 暴雨灾害, 2019, 38(1): 41-47.