Observed Characteristics of Boundary Layer Low-Level Jet over Beijing Area
-
摘要: 利用2016—2017年北京常规探空资料与2016年8月28日—9月2日多点同步加密探空资料,探讨了北京地区边界层低空急流与气象要素的相互关系,以及城市下垫面对急流的影响,并简要分析了急流的形成机制。结果显示:(1) 秋冬季急流表现为发生频率高、急流轴高,强度强,急流风向以偏北风为主;春夏季急流发生频率较低,急流轴低,强度弱,急流风向以偏南风为主。(2) 急流与大气边界层垂直结构有密切关系。急流发生时多伴有悬空逆温的出现。悬空逆温高度和急流上方最小风速高度、风向转变高度有较好一致性关系。(3) 边界层低空急流的生消与位温的日变化过程基本一致,惯性振荡是北京地区夜间晴好天气条件下急流形成的主要机制。(4) 边界层低空急流受下垫面热力差异影响在城、郊有不同的表现特征。城市急流具有显著的突发性和不连续性,维持时间短,发生频率低。郊区急流则发生频率高,维持时间长。典型急流过程中,城市与郊区相比,急流轴高150 m,急流风速小1.6 m·s-1。Abstract: Based on two-year routine sounding data and intensive radiosonde data collected at multiple stations from August 28 to September 2, 2016, over the Beijing area, this study investigated the relationship between boundary layer low-level jet (BLLJ) and meteorological elements, analyzed the differences in BLLJ characteristics between urban and suburban areas, and briefly explored its formation mechanism. The results show that: (1) The BLLJ in autumn and winter was more frequent, higher, and stronger, and the main jet direction was southerly. In spring and summer, it became less frequent, lower in height, and weaker, and the jet was primarily northerly. (2) The jet was closely related to the vertical structure of the atmospheric boundary layer. In most cases, an elevated inversion layer was observed above the jet. The height of inversion exhibited good consistency with the minimum wind speed above jet height and the wind direction change height. (3) The diurnal variation of potential temperature was similar to the cycle of the BLLJ from its formation to dissipation. The main driver of the nocturnal BLLJ in Beijing was inertial oscillations under clear weather conditions. (4) The difference in BLLJ characteristics between urban and suburban areas was significant. Urban jets were usually abrupt and not coherent, short-lived, and rarely observed. By contrast, suburban jets were frequent and long-lived. In a typical urban jet case, the jet core height was 150 m higher, and the jet intensity was 1.6 m s-1 smaller than those of a suburban jet at the same time.
-
表 1 LLJ的四类等级分类情况
LLJ Category 强度 Vmax/(m·s-1) ∆V/(m·s-1) LLJ_1 弱 ≥6 ≥3 LLJ_2 较强 ≥10 ≥5 LLJ_3 强 ≥14 ≥7 LLJ_4 超强 ≥20 ≥10 表 2 边界层低空急流研究总结
表 3 观测期间三个站点急流特征统计表
时间(DDHH) 宝联 朝阳 大兴 急流轴/m 急流风速/(m·s-1) 急流轴/m 急流风速/(m·s-1) 急流轴/(m) 急流风速/(m·s-1) 2820 450 6.9 350 7.6 250 8.9 2823 400 12.2 300 12.7 250 13.8 2902 — — — — 375 10.3 2905 700 7.7 250 9.2 325 7.0 2908 700 9.5 525 9.2 325 11.0 2911 1000 12.0 825 11.3 800 13.8 2923 — — — — 250 6.3 3002 525 6.7 775 6.5 475 8.7 3020 425 8.0 450 7.5 400 8.7 3108 — — — — 300 11.6 注:“—”为无观测结果。 -
[1] ANDREAS E L, CLAFFEY K J, MAKSHTAS A P. Low level atmospheric jets and inversions over the western Weddell Sea[J]. Boundary Layer Meteorology, 2000, 97(3): 459-486. [2] BANTA R M, NEWSOM R K, LUNDQUIST J K, et al. Nocturnal low level jet characteristics over Kansas during CASES-99[J]. Boundary Layer Meteorology, 2002, 105(2): 221-252. [3] 李炬, 舒文军. 北京夏季夜间低空急流特征观测分析[J]. 地球物理学报, 2008, 51(2): 360-368. [4] ARCHER C L, CALDEIRA K. Global assessment of high altitude wind power[J]. Energies, 2009, 2(2): 307-319. [5] HU X M, KLEIN P M, XUE M, et al. Impact of low level jets on the nocturnal urban heat island intensity in Oklahoma city[J]. Journal of Applied Meteorology and Climatology, 2013, 52(8): 1 779-1 802. [6] 刘鸿波, 何明洋, 王斌, 等. 低空急流的研究进展与展望[J]. 气象学报, 2014, 72(2): 191-206. [7] KLEIN P M, HU X M, SHAPIRO A, et al. Linkages between boundary layer structure and the development of nocturnal low level jets in central Oklahoma[J]. Boundary Layer Meteorology, 2016, 158(3): 383-408. [8] BONNER W D. Climatology of the low level jet[J]. Monthly Weather Review, 1968, 96(12): 833-850. [9] WHITEMAN C D, BIAN X, ZHONG S. Low level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains[J]. Journal of Applied Meteorology, 1997, 36(10): 1 363-1 376. [10] SONG J, LIAO K, COULTER R L, et al. Climatology of the low level jet at the southern Great Plains atmospheric boundary layer experiments site[J]. Journal of Applied Meteorology, 2005, 44(10): 1 593-1 606. [11] TUONONEN M, O'CONNOR E J, SINCLAIR V A, et al. Low level jets over Utö, Finland, based on Doppler lidar observations[J]. Journal of Applied Meteorology and Climatology, 2017, 56(9): 2 577-2 594. [12] WEI W, ZHANG H S, YE X X. Comparison of low level jets along the north coast of China in summer[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(16): 9 692-9 706. [13] SHAO M, WANG Q G, XU J. Simulated diurnal cycles and seasonal variability of low level jets in the boundary layer over complex terrain on the coast of southeast China[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(20): 1 0594-1 0611. [14] WEI W, WU B G, YE X X, et al. Characteristics and mechanisms of low level jets in the Yangtze River Delta of China[J]. Boundary Layer Meteorology, 2013, 149(3): 403-424. [15] MIAO Y, GUO J, LIU S, et al. The climatology of low level jet in Beijing and Guangzhou, China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(5): 2 816-2 830. [16] BLACKADAR A K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bulletin of the American Meteorological Society, 1957, 38(5): 283-290. [17] HOLTON J R. The diurnal boundary layer wind oscillation above sloping terrain[J]. Tellus, 1967, 19(2): 200-205. [18] VAN DE WIEL B J H, MOENE A F, STEENEVELD G J, et al. A conceptual view on inertial oscillations and nocturnal low level jets[J]. Journal of the Atmospheric Sciences, 2010, 67(8): 2 679-2 689. [19] SHAPIRO A, FEDOROVICH E. Nocturnal low level jet over a shallow slope[J]. Acta Geophysica, 2009, 57(4): 950-980. [20] DU Y, ROTUNNO R. A simple analytical model of the nocturnal low level jet over the Great Plains of the United States[J]. Journal of the Atmospheric Sciences, 2014, 71(10): 3 674-3 683. [21] 孙继松. 北京地区夏季边界层急流的基本特征及形成机理研究[J]. 大气科学, 2005, 29(3): 445-452. [22] 郑祚芳, 张秀丽. 边界层急流与北京局地强降水关系的数值研究[J]. 南京气象学院学报, 2007, 30(4): 457-462. [23] DU Y, CHEN G. Heavy rainfall associated with double low level jets over southern China. Part I: Ensemble based analysis[J]. Monthly Weather Review[J]. 2018, 146(11): 3 827-3 844. [24] BANTA R M, SENFF C J, WHITE A B, et al. Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode[J]. Journal of Geophysical Research, 1998, 103(D17): 22 519-22 544. [25] 廖晓农, 孙兆彬, 何娜, 等. 边界层低空急流导致北京PM2.5迅速下降及其形成机制的个例分析[J]. 环境科学, 2016, 37(1): 51-59. [26] CHEN Y, AN J, SUN Y, et al. Nocturnal low level winds and their impacts on particulate matter over the Beijing area[J]. Advances in Atmospheric Sciences, 2018, 35(12): 1 455-1 468. [27] KUTSHER J, HAIKIN N, SHARON A, et al. On the formation of an elevated nocturnal inversion layer in the presence of a low level jet: A case study[J]. Boundary Layer Meteorology, 2012, 144(3): 441-449. [28] COCEAL O, BELCHER S E. Mean winds through an inhomogeneous urban canopy[J]. Boundary Layer Meteorology, 2005, 115(1): 47-68. [29] CHAN A, FUNG J C H, LAU A K H. Influence of urban morphometric modification on regional boundary layer dynamics[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(7): 2 729-2 747. [30] KALLISTRATOVA M, KOUZNETSOV R D, KUZNETSOV D D, et al. Summertime low level jet characteristics measured by sodars over rural and urban areas[J]. Meteorologische Zeitschrift, 2009, 18(3): 289-295. [31] KALLISTRATOVA M A, KOUZNETSOV R D. Low level jets in the Moscow region in summer and winter observed with a sodar network [J]. Boundary Layer Meteorology, 2012, 143(1): 159-175. [32] WANG Y, KLIPP C L, GARVEY D M, et al. Nocturnal low level jet dominated atmospheric boundary layer observed by a Doppler lidar over Oklahoma city during 2003[J]. Journal of Applied Meteorology and Climatology, 2007, 46(12): 2 098-2 109. [33] MELECIO V D, RAMAMURTHY P, AREND M, et al. Thermal structure of a coastal urban boundary layer[J]. Boundary Layer Meteorology, 2018, 169(1): 151-161. [34] BARLOW J F, HALIOS C H, LANE S E, et al. Observations of urban boundary layer structure during a strong urban heat island event[J]. Environmental Fluid Mechanics, 2015, 15(2): 373-398. [35] LUNDQUIST J K, MIROCHA J D. Interaction of nocturnal low level jets with urban geometries as seen in joint urban 2003 data[J]. Journal of Applied Meteorology and Climatology, 2008, 47(1): 44-58. [36] 程佳, 张宁, 朱焱, 等. 苏州城区大气边界层低空急流特征分析[J]. 气象科学, 2016, 36(6): 843-848. [37] 韩彦霞, 王成刚, 严家德, 等. 新型边界层气象探空系统的开发与应用[J]. 气象科技, 2017, 45(5): 804-810. [38] STULL R B. An introduction to boundary layer meteorology[M]. Atmospheric Sciences Library, 1988, 8(8): 89. [39] RIFE D L, PINTO J O, MONAGHAN A J, et al. Global distribution and characteristics of diurnally varying low level jets[J]. Journal of Climate, 2010, 23(19): 5041-5064. [40] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2013: 165-275. [41] 郝为峰, 苏晓冰. 山地边界层急流的观测特性及其成因分析[J]. 气象学报, 2001, 59(1): 120-128. [42] BANTA R M, PICHUGINA Y L, NEWSOM R K. Relationship between low level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer[J]. Journal of the Atmospheric Sciences, 2003, 60(20): 2 549-2 555. [43] VIHMA T, KILPELÄINEN T, MANNINEN M, et al. Characteristics of temperature and humidity inversions and low level jets over Svalbard fjords in spring[J]. Advances in Meteorology, 2011, 2011(c): 1-14.