ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京地区边界层低空急流的观测研究

何松蔚 王成刚 严家德 李炬

何松蔚, 王成刚, 严家德, 李炬. 北京地区边界层低空急流的观测研究[J]. 热带气象学报, 2024, 40(5): 822-833. doi: 10.16032/j.issn.1004-4965.2024.071
引用本文: 何松蔚, 王成刚, 严家德, 李炬. 北京地区边界层低空急流的观测研究[J]. 热带气象学报, 2024, 40(5): 822-833. doi: 10.16032/j.issn.1004-4965.2024.071
HE Songwei, WANG Chenggang, YAN Jiade, LI Ju. Observed Characteristics of Boundary Layer Low-Level Jet over Beijing Area[J]. Journal of Tropical Meteorology, 2024, 40(5): 822-833. doi: 10.16032/j.issn.1004-4965.2024.071
Citation: HE Songwei, WANG Chenggang, YAN Jiade, LI Ju. Observed Characteristics of Boundary Layer Low-Level Jet over Beijing Area[J]. Journal of Tropical Meteorology, 2024, 40(5): 822-833. doi: 10.16032/j.issn.1004-4965.2024.071

北京地区边界层低空急流的观测研究

doi: 10.16032/j.issn.1004-4965.2024.071
基金项目: 

国家自然科学基金面上项目 41975011

国家自然科学基金重点项目 42330608

详细信息
    通讯作者:

    王成刚,男,山西省人,副教授,主要从事边界层气象学研究。E-mail: wcg@nuist.edu.cn

  • 中图分类号: P442

Observed Characteristics of Boundary Layer Low-Level Jet over Beijing Area

  • 摘要: 利用2016—2017年北京常规探空资料与2016年8月28日—9月2日多点同步加密探空资料,探讨了北京地区边界层低空急流与气象要素的相互关系,以及城市下垫面对急流的影响,并简要分析了急流的形成机制。结果显示:(1) 秋冬季急流表现为发生频率高、急流轴高,强度强,急流风向以偏北风为主;春夏季急流发生频率较低,急流轴低,强度弱,急流风向以偏南风为主。(2) 急流与大气边界层垂直结构有密切关系。急流发生时多伴有悬空逆温的出现。悬空逆温高度和急流上方最小风速高度、风向转变高度有较好一致性关系。(3) 边界层低空急流的生消与位温的日变化过程基本一致,惯性振荡是北京地区夜间晴好天气条件下急流形成的主要机制。(4) 边界层低空急流受下垫面热力差异影响在城、郊有不同的表现特征。城市急流具有显著的突发性和不连续性,维持时间短,发生频率低。郊区急流则发生频率高,维持时间长。典型急流过程中,城市与郊区相比,急流轴高150 m,急流风速小1.6 m·s-1

     

  • 图  1  北京地区土地利用类型分布特征

    蓝、黑、浅蓝、黄色4个圆点分别为宝联、朝阳、大兴和南郊观象台地理位置及站点周边5 km范围内下垫面类型分布情况。

    图  2  2016—2017年北京地区四季探空观测与急流发生次数分布(a,灰色柱表示各月探空观测总次数,蓝、橙、红色柱分别表示08时、14时、20时边界层低空急流发生次数),边界层低空急流发生高度季节分布图(b,绿、红、橙、蓝色柱分别表示四季急流发生次数)及急流风向分布频率(c))

    图  3  边界层低空急流风速分布(a),边界层低空急流强度季节特征(b)

    图  4  典型边界层低空急流个例风速(a)、风向(b)、温度(c)、位温(d)垂直廓线特征(阴影区为感兴趣区)

    图  5  夏(a1, a2, a3)、冬(b1, b2, b3)强急流(LLJ-3)和超强急流(LLJ-4)合成结果

    其中浅蓝色棒状线为标准差。

    图  6  悬空逆温高度与风速衰减高度(a)以及风向转变高度(b)的相关关系

    图  7  大兴站点位温廓线(a)和边界层低空急流日变化过程(b)

    图  8  北京大兴站点夜间边界层低空急流风矢随时间变化特征图

    图  9  2016年8月28日23时三站位温(a)、风速(b, c, d)、风向(e)廓线

    表  1  LLJ的四类等级分类情况

    LLJ Category 强度 Vmax/(m·s-1) V/(m·s-1)
    LLJ_1 ≥6 ≥3
    LLJ_2 较强 ≥10 ≥5
    LLJ_3 ≥14 ≥7
    LLJ_4 超强 ≥20 ≥10
    下载: 导出CSV

    表  2  边界层低空急流研究总结

    观测地区 作者 观测时段 急流风向 急流轴高度(m) 急流强度(m·s-1)
    北京 本文 2016—2017年夏季 SW 300~600 6~14
    北京 李炬等[3] 2002—2004年夏季 SW 100~300 4~7
    北京 孙继松[21] 2000—2003年夏季 SW 600~900 11~24
    天津 Wei等[12] 2011年夏季 SW 100~400 6~14
    下载: 导出CSV

    表  3  观测期间三个站点急流特征统计表

    时间(DDHH) 宝联 朝阳 大兴
    急流轴/m 急流风速/(m·s-1) 急流轴/m 急流风速/(m·s-1) 急流轴/(m) 急流风速/(m·s-1)
    2820 450 6.9 350 7.6 250 8.9
    2823 400 12.2 300 12.7 250 13.8
    2902 375 10.3
    2905 700 7.7 250 9.2 325 7.0
    2908 700 9.5 525 9.2 325 11.0
    2911 1000 12.0 825 11.3 800 13.8
    2923 250 6.3
    3002 525 6.7 775 6.5 475 8.7
    3020 425 8.0 450 7.5 400 8.7
    3108 300 11.6
    注:“—”为无观测结果。
    下载: 导出CSV
  • [1] ANDREAS E L, CLAFFEY K J, MAKSHTAS A P. Low level atmospheric jets and inversions over the western Weddell Sea[J]. Boundary Layer Meteorology, 2000, 97(3): 459-486.
    [2] BANTA R M, NEWSOM R K, LUNDQUIST J K, et al. Nocturnal low level jet characteristics over Kansas during CASES-99[J]. Boundary Layer Meteorology, 2002, 105(2): 221-252.
    [3] 李炬, 舒文军. 北京夏季夜间低空急流特征观测分析[J]. 地球物理学报, 2008, 51(2): 360-368.
    [4] ARCHER C L, CALDEIRA K. Global assessment of high altitude wind power[J]. Energies, 2009, 2(2): 307-319.
    [5] HU X M, KLEIN P M, XUE M, et al. Impact of low level jets on the nocturnal urban heat island intensity in Oklahoma city[J]. Journal of Applied Meteorology and Climatology, 2013, 52(8): 1 779-1 802.
    [6] 刘鸿波, 何明洋, 王斌, 等. 低空急流的研究进展与展望[J]. 气象学报, 2014, 72(2): 191-206.
    [7] KLEIN P M, HU X M, SHAPIRO A, et al. Linkages between boundary layer structure and the development of nocturnal low level jets in central Oklahoma[J]. Boundary Layer Meteorology, 2016, 158(3): 383-408.
    [8] BONNER W D. Climatology of the low level jet[J]. Monthly Weather Review, 1968, 96(12): 833-850.
    [9] WHITEMAN C D, BIAN X, ZHONG S. Low level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains[J]. Journal of Applied Meteorology, 1997, 36(10): 1 363-1 376.
    [10] SONG J, LIAO K, COULTER R L, et al. Climatology of the low level jet at the southern Great Plains atmospheric boundary layer experiments site[J]. Journal of Applied Meteorology, 2005, 44(10): 1 593-1 606.
    [11] TUONONEN M, O'CONNOR E J, SINCLAIR V A, et al. Low level jets over Utö, Finland, based on Doppler lidar observations[J]. Journal of Applied Meteorology and Climatology, 2017, 56(9): 2 577-2 594.
    [12] WEI W, ZHANG H S, YE X X. Comparison of low level jets along the north coast of China in summer[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(16): 9 692-9 706.
    [13] SHAO M, WANG Q G, XU J. Simulated diurnal cycles and seasonal variability of low level jets in the boundary layer over complex terrain on the coast of southeast China[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(20): 1 0594-1 0611.
    [14] WEI W, WU B G, YE X X, et al. Characteristics and mechanisms of low level jets in the Yangtze River Delta of China[J]. Boundary Layer Meteorology, 2013, 149(3): 403-424.
    [15] MIAO Y, GUO J, LIU S, et al. The climatology of low level jet in Beijing and Guangzhou, China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(5): 2 816-2 830.
    [16] BLACKADAR A K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bulletin of the American Meteorological Society, 1957, 38(5): 283-290.
    [17] HOLTON J R. The diurnal boundary layer wind oscillation above sloping terrain[J]. Tellus, 1967, 19(2): 200-205.
    [18] VAN DE WIEL B J H, MOENE A F, STEENEVELD G J, et al. A conceptual view on inertial oscillations and nocturnal low level jets[J]. Journal of the Atmospheric Sciences, 2010, 67(8): 2 679-2 689.
    [19] SHAPIRO A, FEDOROVICH E. Nocturnal low level jet over a shallow slope[J]. Acta Geophysica, 2009, 57(4): 950-980.
    [20] DU Y, ROTUNNO R. A simple analytical model of the nocturnal low level jet over the Great Plains of the United States[J]. Journal of the Atmospheric Sciences, 2014, 71(10): 3 674-3 683.
    [21] 孙继松. 北京地区夏季边界层急流的基本特征及形成机理研究[J]. 大气科学, 2005, 29(3): 445-452.
    [22] 郑祚芳, 张秀丽. 边界层急流与北京局地强降水关系的数值研究[J]. 南京气象学院学报, 2007, 30(4): 457-462.
    [23] DU Y, CHEN G. Heavy rainfall associated with double low level jets over southern China. Part I: Ensemble based analysis[J]. Monthly Weather Review[J]. 2018, 146(11): 3 827-3 844.
    [24] BANTA R M, SENFF C J, WHITE A B, et al. Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode[J]. Journal of Geophysical Research, 1998, 103(D17): 22 519-22 544.
    [25] 廖晓农, 孙兆彬, 何娜, 等. 边界层低空急流导致北京PM2.5迅速下降及其形成机制的个例分析[J]. 环境科学, 2016, 37(1): 51-59.
    [26] CHEN Y, AN J, SUN Y, et al. Nocturnal low level winds and their impacts on particulate matter over the Beijing area[J]. Advances in Atmospheric Sciences, 2018, 35(12): 1 455-1 468.
    [27] KUTSHER J, HAIKIN N, SHARON A, et al. On the formation of an elevated nocturnal inversion layer in the presence of a low level jet: A case study[J]. Boundary Layer Meteorology, 2012, 144(3): 441-449.
    [28] COCEAL O, BELCHER S E. Mean winds through an inhomogeneous urban canopy[J]. Boundary Layer Meteorology, 2005, 115(1): 47-68.
    [29] CHAN A, FUNG J C H, LAU A K H. Influence of urban morphometric modification on regional boundary layer dynamics[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(7): 2 729-2 747.
    [30] KALLISTRATOVA M, KOUZNETSOV R D, KUZNETSOV D D, et al. Summertime low level jet characteristics measured by sodars over rural and urban areas[J]. Meteorologische Zeitschrift, 2009, 18(3): 289-295.
    [31] KALLISTRATOVA M A, KOUZNETSOV R D. Low level jets in the Moscow region in summer and winter observed with a sodar network [J]. Boundary Layer Meteorology, 2012, 143(1): 159-175.
    [32] WANG Y, KLIPP C L, GARVEY D M, et al. Nocturnal low level jet dominated atmospheric boundary layer observed by a Doppler lidar over Oklahoma city during 2003[J]. Journal of Applied Meteorology and Climatology, 2007, 46(12): 2 098-2 109.
    [33] MELECIO V D, RAMAMURTHY P, AREND M, et al. Thermal structure of a coastal urban boundary layer[J]. Boundary Layer Meteorology, 2018, 169(1): 151-161.
    [34] BARLOW J F, HALIOS C H, LANE S E, et al. Observations of urban boundary layer structure during a strong urban heat island event[J]. Environmental Fluid Mechanics, 2015, 15(2): 373-398.
    [35] LUNDQUIST J K, MIROCHA J D. Interaction of nocturnal low level jets with urban geometries as seen in joint urban 2003 data[J]. Journal of Applied Meteorology and Climatology, 2008, 47(1): 44-58.
    [36] 程佳, 张宁, 朱焱, 等. 苏州城区大气边界层低空急流特征分析[J]. 气象科学, 2016, 36(6): 843-848.
    [37] 韩彦霞, 王成刚, 严家德, 等. 新型边界层气象探空系统的开发与应用[J]. 气象科技, 2017, 45(5): 804-810.
    [38] STULL R B. An introduction to boundary layer meteorology[M]. Atmospheric Sciences Library, 1988, 8(8): 89.
    [39] RIFE D L, PINTO J O, MONAGHAN A J, et al. Global distribution and characteristics of diurnally varying low level jets[J]. Journal of Climate, 2010, 23(19): 5041-5064.
    [40] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2013: 165-275.
    [41] 郝为峰, 苏晓冰. 山地边界层急流的观测特性及其成因分析[J]. 气象学报, 2001, 59(1): 120-128.
    [42] BANTA R M, PICHUGINA Y L, NEWSOM R K. Relationship between low level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer[J]. Journal of the Atmospheric Sciences, 2003, 60(20): 2 549-2 555.
    [43] VIHMA T, KILPELÄINEN T, MANNINEN M, et al. Characteristics of temperature and humidity inversions and low level jets over Svalbard fjords in spring[J]. Advances in Meteorology, 2011, 2011(c): 1-14.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  2
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2024-04-01
  • 网络出版日期:  2025-01-08
  • 刊出日期:  2024-10-20

目录

    /

    返回文章
    返回