ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于探空数据的飓风垂直风速特征研究

孙尧 李煜斌 汤杰 高志球 尹剑 吴宇杰

孙尧, 李煜斌, 汤杰, 高志球, 尹剑, 吴宇杰. 基于探空数据的飓风垂直风速特征研究[J]. 热带气象学报, 2024, 40(5): 859-868. doi: 10.16032/j.issn.1004-4965.2024.075
引用本文: 孙尧, 李煜斌, 汤杰, 高志球, 尹剑, 吴宇杰. 基于探空数据的飓风垂直风速特征研究[J]. 热带气象学报, 2024, 40(5): 859-868. doi: 10.16032/j.issn.1004-4965.2024.075
SUN Yao, LI Yubin, TANG Jie, GAO Zhiqiu, YIN Jian, WU Yujie. Vertical Velocity Characteristics of Hurricanes Based on Dropsondes Data[J]. Journal of Tropical Meteorology, 2024, 40(5): 859-868. doi: 10.16032/j.issn.1004-4965.2024.075
Citation: SUN Yao, LI Yubin, TANG Jie, GAO Zhiqiu, YIN Jian, WU Yujie. Vertical Velocity Characteristics of Hurricanes Based on Dropsondes Data[J]. Journal of Tropical Meteorology, 2024, 40(5): 859-868. doi: 10.16032/j.issn.1004-4965.2024.075

基于探空数据的飓风垂直风速特征研究

doi: 10.16032/j.issn.1004-4965.2024.075
基金项目: 

国家自然科学基金项目 42075072

详细信息
    通讯作者:

    李煜斌,男,江西省人,教授,主要从事大气边界层和热带气旋动力学研究。E-mail: liyubin@nuist.edu.cn

  • 中图分类号: P444

Vertical Velocity Characteristics of Hurricanes Based on Dropsondes Data

  • 摘要: 基于飞机下投探空数据分析了飓风中大气低层(地面3 km内)垂直风速的分布特征。结果表明,飓风近区(归一化半径R/RMW小于5的区域,其中R为下投探空与飓风中心之间的距离,RMW为飓风的最大风速半径)、远区(5≤R/RMW < 10的区域)和外区(R/RMW≥10的区域)垂直风的低风速段(垂直风速绝对值< 2 m·s-1) 随高度分布特征的区别不明显,但高风速段(垂直风速绝对值≥2 m·s-1)在近区出现正值的频次最高,明显多于远区和外区;而在外区出现负值的频次最高,明显多于近区和远区。在飓风近区随着高度的增加上升气流出现的频次降低,而下沉气流出现的频次增多,在飓风远区和外区上升气流的强弱和出现的比例随高度的变化不明显;在飓风近区上升气流的速度和出现的比例随着飓风强度增强而增大,而远区和外区的垂直风中位数速度和出现的比例随飓风强度的变化不明显。此外,观测发现飓风上升气流风速可超过10 m·s-1,通常出现在归一化半径为1~2.5的区域内,且需飓风最大风速达到50 m·s-1以上。

     

  • 图  1  在飓风不同归一化半径区域内投放下投式探空仪的数量

    图  2  飓风不同归一化半径区域内各高度处的垂直风低风速段(风速绝对值≤2 m·s-1)的分布情况

    图中柱状浅灰色部分为飓风近区垂直风速的探测数量,深灰色和黑色则为远区和外区。a~e分别为100 m、500 m、1 000 m、2 000 m和3 000 m高度的值。

    图  3  图 2,但为垂直风高风速段(风速绝对值≥2 m·s-1)的分布情况。

    图  4  飓风不同归一化半径区域内出现强上升气流的概率

    图  5  在不同高度上各垂直风速的探测频次特征。

    图  6  强上升气流(≥5 m·s-1)在不同高度上的分布比例

    此处比例的算法为:该高度处≥5 m·s-1上升气流观测次数与全部高度≥5 m·s-1上升气流观测次数的比值。图a~f分别对应不同的归一化半径:a.0 < R/RMW < 1,b.1≤R/RMW < 1.5,c.1.5≤R/RMW < 2,d).2≤R/RMW < 2.5,e.2.5≤R/RMW < 5,f.R/RMW≥5。

    图  7  不同归一化半径区域内强上升气流的高度分布情况

    图中横坐标为垂直风速大小,箱内横线为中位数值,箱区上沿为75%分位数,下沿为25%分位数。横坐标轴括号内数字为该强度垂直气流的观测次数。

    图  8  垂直风速大小随飓风强度的分布情况

    飓风强度由其最大风速值所表示;纵坐标为每个下投式探空仪在下落过程中所测得的上升气流最大风速值;横坐标轴括号内数字为该强度垂直气流的观测次数。

    图  9  ≥5 m·s-1(a)和≥10 m·s-1(b)上升气流出现比例随飓风强度的变化关系

  • [1] 陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001(3): 420-432.
    [2] JUNHONG W, KATE Y, TERRY H, et al. A Long-term high-quality high-vertical-resollution GPS gropsonde dataset for hurricane and other studies[J]. Bulletin of the American Meteorological Society, 2015, 96(6): 961-973.
    [3] WANG H, XU M, ONEYJURUWA A, et al. Tropical cyclone damages in Mainland China over 2005—2016: Losses analysis and implications[J]. Environment, Development and Sustainability, 2019, 21(6): 3 077-3 092.
    [4] 翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾[J]. 中国工程科学, 2012, 14(9): 55-63, 84.
    [5] KNUTSON T R, UlEYA R E. Impact of CO 2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization[J]. Journal of climate, 2004, 17(18): 3 477-3 495.
    [6] KNUTSON T R, SIRUTIS J J, GARNER S T, et al. Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18- km-grid regional model[J]. Bulletin of the American Meteorological Society, 2007, 88(10): 1 549-1 565.
    [7] ABERSON S D, BLACK M L, BLACK R A, et al. Thirty years of tropical cyclone research with the NOAA P-3 aircraft[J]. Bulletin of the American Meteorological Society, 2006, 87(8): 1 039-1 056.
    [8] 张晓宇, 韦波, 杨昊宇, 等. 基于GIS的广东省台风灾害风险性评价[J]. 热带气象学报, 2018, 34(6): 783-790.
    [9] HALVERSON J B, SIMPSON J, HEYMSFIELD G, et al. Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4[J]. American Meteorological Society, 2006, 63(1): 909-324.
    [10] HOCK T F, FRANKLIN J L. The ncar gps dropwindsonde[J]. Bulletin of the American Meteorological Society, 1999, 80(3): 407-420.
    [11] OOUCHI K, YOSHIMURA J, YOSHIMURA H, et al. Tropical cyclone climatology in a global-warming climate as simulated in a 20 kmmesh global atmospheric model: Frequency and wind intensity analyses[J]. Journal of the Meteorological Society of Japan 2006, 84(2): 259- 276.
    [12] WANG J, BIAN J, BROWN W O, et al. Vertical air motion from T-REX radiosonde and dropsonde data[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(5): 928-942.
    [13] FRANKLIN J L, FEUER S E, KAPLAN J, et al. Tropical cyclone motion and surrounding flow relationships: Searching for beta gyres in omega dropwindsonde datasets[J]. Monthly Weather Review, 1996, 124(1): 64-84.
    [14] FRANKLIN J L, BLACK M L, VALDE K. GPS dropwindsonde wind profiles in hurricanes and their operational implications[J]. Weather and Forecasting, 2003, 18(1): 32-44.
    [15] WU L, LIU Q, LI Y. Prevalence of tornado-scale vortices in the tropical cyclone eyewall[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8 307-8 310.
    [16] MARKS F D, BLACK P G, MONTGOMERY M T, et al. Structure of the eye and eyewall of Hurricane Hugo (1989)[J]. Monthly Weather Review, 2008, 136(4): 1 237-1 259.
    [17] GUIMOND S R, HEYMSFIELD G M, TUEK F J. Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification[J]. Journal of the Atmospheric Sciences, 2010, 67(3): 633-654.
    [18] HEYMSFIELD G M, TIAN L, HEYMSFIELD A J, et al. Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar[J]. Journal of the Atmospheric Sciences, 2010, 67(2): 285-308.
    [19] BLACK M L, BURPEE R W, MSRKS F D. Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities[J]. Journal of the Atmospheric Sciences, 1996, 53(13): 1 887-1 909.
    [20] STERN D P, BRYAN G H, ABERSON S D. Extreme low-level updrafts and wind speeds measured by dropsondes in tropical cyclones[J]. Monthly Weather Review, 2016, 144(6): 2 177-2 204.
    [21] SRERN D P, ABERSON S D. Extreme vertical winds measured by dropwindsondes in hurricanes[C]//27th Conf. on Hurricanes and Tropical Meteorology, 2006.
    [22] LORSOLO S, ZHANG J A, MARKS F, et al. Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements [J]. Monthly Weather Review, 2010, 138(9): 3 656-3 670.
    [23] ZHANG J A, MARKS F D, MONTGOMERY M T, et al. An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989)[J]. Monthly Weather Review, 2010, 139(5): 1 447-1 462.
    [24] DOYLE J D, MOSKAITIS J R, FELDMEIER J W, et al. A view of tropical cyclones from above: The tropical cyclone intensity experiment [J]. Bulletin of the American Meteorological Society, 2017, 98(10): 2 113-2 134.
    [25] ROGERS R F, ABERSON S, BELL M M, et al. Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015)[J]. Bulletin of the American Meteorological Society, 2017, 98(10): 2 091-2 112.
    [26] ALFORD A A, BIGGERSTAFF M I, CARRIE G D, et al. Near-surface maximum winds during the landfall of Hurricane Harvey[J]. Geophysical Research Letters, 2019, 46(2): 973-982.
    [27] ZHENG Y, WU L, ZHAO H, et al. Simulation of extreme updrafts in the tropical cyclone eyewall[J]. Advances in Atmospheric Sciences, 2020, 37(7): 781-792.
    [28] 仲鹏志, 冶磊, 李煜斌, 等. 不同边界层参数化方案对台风"利奇马"模拟的影响研究[J]. 热带气象学报, 2022, 38(2): 275-289.
    [29] LI X, PU Z, GAO Z. Effects of roll vortices on the evolution of Hurricane Harvey during landfall[J]. Journal of the Atmospheric Sciences, 2021, 78(6): 1 847-1 867.
    [30] STREN D P, BRYAN G H, LEE C Y, et al. Estimating the risk of extreme wind gusts in tropical cyclones using idealized large-eddy simulations and a statistical-dynamical model[J]. Monthly Weather Review, 2021, 149(12): 4 183-4 204.
    [31] ZHANG J A, ROGERS R F, REASOR P D, et al. Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear[J]. Monthly Weather Review, 2013, 141(11): 3 968-3 984.
    [32] MOLINARI J, ROMPS D M, VOLLARO D, et al. CAPE in tropical cyclones[J]. Journal of the Atmospheric Sciences, 2012, 69(8): 2 452- 2 463.
    [33] 吴联要, 雷小途. 内核及外围尺度与热带气旋强度关系的初步研究[J]. 热带气象学报, 2012, 28(5): 719-725.
    [34] RIEMER M, LALIBERTE F. Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction[J]. Journal of the Atmospheric Sciences, 2015, 72(9): 3 517-3 536.
    [35] DAVIDSON N E, HOLLAND G J, MCBRIDE J L, et al. On the formation of AMEX tropical cyclones Irma and Jason[J]. Monthly Weather Review, 1990, 118(10): 1 981-2 000.
    [36] RIOS B R. Impacts of radiation and cold pools on the intensity and vortex tilt of weak tropical cyclones interacting with vertical wind shear [J]. Journal of the Atmospheric Sciences, 2020, 77(2): 669-689.
    [37] KEPERT J D. The boundary layer dynamics of tropical cyclone rainbands[J]. Journal of the Atmospheric Sciences, 2018, 75(11): 3 777-3 795.
    [38] WU L, LIU Q, LI Y. Tornado-scale vortices in the tropical cyclone boundary layer: numerical simulation with the WRF-LES framework[J]. Atmospheric Chemistry and Physics, 2019, 19(4): 2 477-2 487.
  • 加载中
图(9)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 修回日期:  2024-01-07
  • 网络出版日期:  2025-01-08
  • 刊出日期:  2024-10-20

目录

    /

    返回文章
    返回