Weather Causes of 0-6 km Ozone Variation in the Wuyishan Region: An Analysis Based on Radiosonde Observations
-
摘要: 基于2022年福建省武夷山区域邵武站O3探空观测51次科学试验,分析该区域对流层中下层(0~6 km)O3的季节分布和O3体积混合比(OVMR)变化趋势,探究O3柱浓度(COA)排名前5和后5个例的大气环流形势、诊断物理量及垂直廓线的差异。结果表明:1.5 km以下OVMR春季>秋季>夏季>冬季,1.5 km以上OVMR呈现春季最大,夏季最低,除了秋季,其他季节均呈现随高度增加的趋势;0~6 km排名前5的个例有3个发生在4—5月,主导天气形势与风场为冷高压前偏北或高压底部偏东气流控制,2个发生在9月,为副热带高压和台风外围的下沉气流共同影响;且均表现出对流层中下层大气层结稳定,空气干燥,湿层很薄,存在明显的下沉气流,对流抑制能力强,低层为偏东风,风速在4~8 m·s-1之间。排名后5个例的发生月份、天气形势、诊断物理量等与排名前5个例的有明显的差异。Abstract: Based on data from 51 ozone (O3) sounding observations at the Shaowu Station in the Wuyishan region in 2022, this study analyzed the seasonal distribution of O3 in the middle and lower troposphere (0-6 km) and the variation trend of ozone volume mixing ratio (OVMR) in this region. We also explored differences in the atmospheric circulation situation, diagnostic physical quantities, and vertical profiles of 10 cases with column ozone amount (COA) ranking in the top 5 and bottom 5. The results show that the seasonal values of OVMR below the 1.5 km altitude peaks in spring, followed by autumn, summer, and winter, while OVMR above 1.5 km was highest in spring and lowest in summer. Except for autumn, the seasonal distribution of OVMR above 1.5 km showed an increasing trend with height in all seasons. Dominated by the northward flow before the cold high pressure or the easterly flow at the bottom of the high pressure, three of the top 5 cases with COA in the 0-6 km occurred from April to May. The other two cases occurred in September, jointly influenced by the subtropical high and the sinking airflow around the periphery of typhoons. In all 5 cases, stable atmospheric structure was observed in the middle and lower layers of the troposphere. The air was dry with a thin wet layer. Obvious sinking airflow strongly suppressed convection suppression. There were easterly winds in the lower layers with wind speeds ranging from 4-8 m·s-1. Significant differences were observed in the occurrence months, weather conditions, and diagnostic physical quantities between the last 5 cases and the top 5 cases.
-
表 1 2022年邵武站0~6 km COA排名前5和后5的典型个例
排序 日期 COA/DU 排序 日期 COA/DU Top 1 20220504 28.25 Last 1 20220721 11.71 Top 2 20220518 27.97 Last 2 20220622 13.15 Top 3 20220406 27.71 Last 3 20221123 13.73 Top 4 20220921 26.83 Last 4 20221116 14.83 Top 5 20220907 24.01 Last 5 20220824 15.00 表 2 COA排名前5的气象探空诊断物理量
关键参数 20220504 20220518 20220406 20220921 20220907 CAPE/(J·kg-1) 0 0.9 0 0 0 DCAPE/(J·kg-1) 609.1 713.7 282.2 209.3 711.1 CIN/(J·kg-1) 0 0 0 0 0 K指数 -5.3 -14.1 10.5 22.1 27.3 可降水量PW/mm 0 0 0 0 0 最大上升速度W-CAPE/(m·s-1) 0 1.3 0 0 0 湿层(相对湿度>80%) (浅绿色横向阴影,图 7) 贴地,薄,厚度约200 m 1.贴地,薄,厚度约200 m;2.高,7.5 km以上 贴地,薄,厚度约200 m 高,4.0~7.5 km 高,3.2~7.5 km 600 hPa下沉有效位能(深绿色斜向阴影面积,图 7) 面积大 面积大 面积中等 面积中等 面积大 边界层风向,风速/(m·s-1) E, 2~6 E, 4~8 E, 2 E, 6~8 E, 2~8 表 3 COA排名后5的气象探空诊断物理量
关键参数 无降水,但有降水潜势 有降水 20220721 20220622 20220824 20221116 20221123 CAPE/(J·kg-1) 887.9 1998.3 945.3 2.3 3.7 DCAPE/(J·kg-1) 0 0 0.1 0.9 0 K指数 36.1 37.9 40.7 33.9 36.3 大气可降水量PW/mm 0 8.2 0 6.4 2.6 最大上升速度W-CAPE/(m·s-1) 42.1 63.2 43.5 2.1 2.7 湿层厚度(相对湿度>80%)(浅绿色横向阴影,图 8) 贴地,薄,厚度约200 m 整层 高,1.8 ~ 4.5 整层 整层 600 hPa下沉有效位能(深绿色斜向阴影面积,图 8) 面积大 面积很小 面积大 无 无 边界层风向,风速/(m·s-1) SW,4~16 SW,4~16 SE,2~10 SW-SE,2~6 S-NW,2~4 -
[1] GAUDEL A, COOPER O R, ANCELLET G, et al. Tropospheric ozone assessment report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation[J]. Elem Sci Anth, 2018, 6(1): 39. [2] MYHRE G, SHINDELL D, BRÉON F M, et al. Anthropogenic and natural radiative forcing. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]//Stocker, T.F., D. Qin, G. -K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds. ), Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2014: 659-740. [3] LEFOHN A S, MALLEY C S, SMITH L, et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research[J]. Elem Sci Anth, 2018, 6(1): 28. [4] HOLTON J R, HAYNES P H, MCLNTYRE M E, et al. Tratosphere-troposphere exchange[J]. Rev of Geophys, 1995, 33(4): 403-439. [5] 崔宏, 赵春生, 秦瑜, 等. 一次平流层-对流层交换过程中臭氧通量的估算[J]. 科学通报, 2004, 49(5): 506-513. [6] 刘毅, 刘小红, 李家伦, 等. 冷锋天气大气边界层内臭氧及氮氧化物的观测研究[J]. 大气科学, 2000, 24(2): 165-172. [7] 李国辉, 吕达仁. 对流层顶变化对上对流层/下平流层臭氧分布的影响[J]. 空间科学学报, 2003, 23(4): 269-277. [8] 吕达仁, 陈泽宇, 卞建春, 等. 平流层-对流层相互作用的多尺度过程特征及其与天气气候关系——研究进展[J]. 大气科学, 2008, 32 (4): 782-793. [9] REICH P B, AMUNDSON A G. Ambient levels of ozone reduce net photosynthesis in tree and crop species[J]. Science, 1985, 230(4 725): 566-570. [10] WHITE M C, ETZEL R A, WILCOX W D, et al. Exacerbations of childhood asthma and ozone pollution in Atlanta[J]. Environmental Research, 1994, 65(1): 56-68. [11] GALLARDO L, HENRQUEZ A, THOMPSON A M, et al. The first twenty years (1994-2014) of ozone soundings from Rapa Nui (27°S, 109°W, 51 m a. s. l. )[J]. Tellus Ser B, Chem Phys Meteor, 2017, 68(1): 1-16. [12] ZHENG Y L, DENG H Y, YOU H B, et al. A study of the vertical distribution and sub-peaks of ozone below 12 km over Wuyishan Region based on ozone sounding in Winter[J]. Atmos, 2022, 13(6): 979. [13] 陈源, 刘海磊, 段民征, 等. 利用探空资料验证北京地区OMPS卫星臭氧产品[J]. 遥感技术与应用, 2020, 35(3): 723-730. [14] 蔡兆男, 王永, 刘毅, 等. 利用探空资料验证GOME卫星臭氧数据[J]. 应用气象学报, 2009, 20(3): 338-339. [15] 石广玉, 许黎, 吕位秀, 等. 0—33公里大气臭氧和气溶胶垂直分布的气球观测[J]. 科学通报, 1986, 31(15): 1 165-1 167. [16] 郑向东, 李维亮, 周秀骥, 等. 臭氧垂直分布个例观测中次峰现象的诊断分析[J]. 自然科学进展, 2001, 11(11): 1 181-1 185. [17] LIU Q J, ZHENG X D, LUO C, et al. Ozone vertical profile characteristics over Qinghai plateau measured by electrochemical concentration cell ozonesondes[J]. Adv Atmos Sci, 1997, 14(4): 481-490. [18] KUNZ H, SPETH P. Variability of near-ground ozone concentrations during cold front passages: a possible effect of tropopause folding events[J]. J Atmos Chem, 1997, 28: 77-95. [19] 崔宏, 赵春生, 郑向东, 等. 2001年春季临安地区对流层臭氧异常增加的一次过程分析[J]. 大气科学, 2005, 29(2): 259-266. [20] 杨健, 吕达仁. 东亚地区平流层、对流层交换对臭氧分布影响的模拟研究[J]. 大气科学, 2004, 28(4): 581-588. [21] CHAN L Y, LIU H Y, LAM K S, et al. Analysis of the seasonal behavior of tropospheric ozone at Hong Kong[J]. Atmos Environ, 1998, 32 (2): 159-168. [22] 周秀骥, 罗超, 李维亮, 等. 中国地区臭氧总量变化与青藏高原低值中心[J]. 科学通报, 1995, 40(15): 1 396-1 398. [23] LI C H, LI Y B, PENG J M, et al. Analysis of vertical distribution of ozone in Winter and its transport from stratosphere to troposphere in the Pearl River Delta Region of China[J]. Journal of Sensors, 2022, 2022(15): 1-12. [24] LIAO Z H, LING Z H, GAO M, et al. Tropospheric ozone variability over Hong Kong based on recent 20 years (2000-2019) ozonesonde observation[J]. J Geophys Res, 2021, 126, e2020JD033054. [25] 林莉文, 卞建春, 李丹, 等. 北京城区大气混合层内臭氧垂直结构特征的初步分析——基于臭氧探空[J]. 地球物理学报, 2018, 61(7): 2 667-2 678. [26] 李丹, 卞建春, 范秋君. 东亚一次典型切断低压引起的平流层空气深入侵过程的分析[J]. 中国科学: 地球科学, 2014, 44(10): 2 315-2 327. [27] MA D, BIAN J, LI D, et al. Mixing characteristics within the tropopause transition layer over the Asian summer monsoon region based on ozone and water vapor sounding data[J]. Atmos Res, 2022, 271: 106 093. [28] 刘传熙, 刘毅, 王永. 基于探空资料的北京地区大气臭氧垂直分布特征[J]. 气象与环境学报, 2016, 32(1): 46-52. [29] SHUN C M, LEUNG K S. The first radioactiveity and ozone soundings in Hong Kong[J]. Hong Kong Meteorological Society Bulletin, 1993, 3(2): 21-27. [30] 孙宇婷, 郑向东, 卞建春, 等. 夏季青藏高原北部对流层臭氧垂直分布的观测研究[J]. 气象学报, 2022, 80(5): 806-818. [31] 郑永光, 陈鲁言, 陈尊裕, 等. 2001年春季临安, 昆明和香港臭氧垂直分布特征的对比分析[J]. 北京大学学报: 自然科学版, 2005, 41(1): 104-114. [32] ZHU T F, DENG H Y, HUANG J H, et al. Analysis of ozone vertical profiles over wuyishan region during Spring 2022 and their correlations with meteorological factors[J]. Atmosphere, 2022, 13(9): 1 505. [33] 王春辉, 李子亮, 王光磊, 等. 邵武市近地层臭氧分布特征及与气象条件的关系[J]. 海峡科学, 2023, 194(2): 14-19. [34] 郑向东, 宣越键, 林伟立, 等. 国产ECC型O3探空仪性能测试及室外比对观测[J]. 应用气象学报, 2018, 29(4): 460-473. [35] 王宏, 蒋冬升, 谢祖欣, 等. 福建省近地层臭氧时空分布与超标天气成因[J]. 中低纬山地气象, 2018, 42(1): 1-6. -