ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维卷积的双偏振雷达定量降水估测研究

张毅 谢宸浩 陈雨欣 黎德波 张永华 熊梓立

张毅, 谢宸浩, 陈雨欣, 黎德波, 张永华, 熊梓立. 基于三维卷积的双偏振雷达定量降水估测研究[J]. 热带气象学报, 2025, 41(2): 200-210. doi: 10.16032/j.issn.1004-4965.2025.018
引用本文: 张毅, 谢宸浩, 陈雨欣, 黎德波, 张永华, 熊梓立. 基于三维卷积的双偏振雷达定量降水估测研究[J]. 热带气象学报, 2025, 41(2): 200-210. doi: 10.16032/j.issn.1004-4965.2025.018
ZHANG Yi, XIE Chenhao, CHEN Yuxin, LI Debo, ZHANG Yonghua, XIONG Zili. Research on Quantitative Precipitation Estimation Using Dual-Polarization Radar Based on 3D Convolution[J]. Journal of Tropical Meteorology, 2025, 41(2): 200-210. doi: 10.16032/j.issn.1004-4965.2025.018
Citation: ZHANG Yi, XIE Chenhao, CHEN Yuxin, LI Debo, ZHANG Yonghua, XIONG Zili. Research on Quantitative Precipitation Estimation Using Dual-Polarization Radar Based on 3D Convolution[J]. Journal of Tropical Meteorology, 2025, 41(2): 200-210. doi: 10.16032/j.issn.1004-4965.2025.018

基于三维卷积的双偏振雷达定量降水估测研究

doi: 10.16032/j.issn.1004-4965.2025.018
基金项目: 

中国气象局智能气象观测技术重点开放实验室项目 ZNGC2024QN18

广东省气象局科学技术研究项目 GRMC2023Q36

广东省气象局科学技术研究项目 GRMC2023Z02

详细信息
    通讯作者:

    谢宸浩,男,广东省人,工程师,主要从事天气雷达相关研究。E-mail:884498536@qq.com

  • 中图分类号: P412.25

Research on Quantitative Precipitation Estimation Using Dual-Polarization Radar Based on 3D Convolution

  • 摘要: 强降水常常引发洪涝灾害,因此提高雷达定量降水估测(QPE)准确性对减轻灾害损失具有重要意义。利用广州双偏振雷达数据与自动站雨量数据生成四维数据集,设计了3DPoly-QPENet、3DTime-QPENet、3DEcho-QPENet三种三维卷积QPE模型进行比较试验。通过测试集的性能评估和典型暴雨个例的检验,得出以下结论:(1)四维数据集相较于传统的三维数据集,在捕捉降水分布特征和提升QPE拟合效果方面提供了更多的可能性;(2)三种三维卷积QPE模型呈现出与结构设计紧密相关的性能差异,其中3DPoly-QPENet在中等降水量区间(15~20 mm·h-1)的平均绝对误差(MAE)较另两种模型平均降低13%;3DTime-QPENet在高降水量事件(>50 mm·h-1)的MAE较另两种模型平均降低8.1%;3DEcho-QPENet全局误差均衡性最优,总体MAE较另两种模型平均降低20.4%;(3)三维卷积模型均系统性优于传统Z-R关系方法,平均RMSE降低46.6%,MAE下降48.6%,CC提升21.4%。

     

  • 图  1  雷达站和雨量站分布图

    黑色X为广州雷达位置,红色圆点为广州雷达100 km范围内的雨量站点。

    图  2  雷达参量(ZHZDRKDP)-自动站雨量数据集示意图

    图  3  降水强度分布统计图

    图  4  模型结构图

    a. 3DPoly-QPENet;b. 3DTime-QPENet;c. 3DEcho-QPENet。

    图  5  3DPoly-QPENet (a)、3DTime-QPENet (b)、3DEcho-QPENet (c)三种模型预测结果散点密度图

    图  6  北京时间2022年6月14日09:00降水个例

    图a为观测的降水场、图b为Z-R关系估测降水、图c为3DPoly-QPENet模型估测降水、图d为3DTime-QPENet模型估测降水、图e为3DEcho-QPENet模型估测降水)及北京时间2022年9月8日19:00降水个例(图f为观测的降水场、图g为Z-R关系估测降水、图h为3DPoly-QPENet模型估测降水、图i为3DTimeQPENet模型估测降水、图j为3DEcho-QPENet模型估测降水

    表  1  模型预测结果评估指标对比

    模型 雨量等级/(mm·h-1) RE/% MAE/mm RMSE/mm Bias CC R2
    3DPoly-QPENet Total 58.03 2.840 4.696 1.260 0.852 0.711
    0.1~5 56.24 2.110 2.911 2.051
    5~15 34.71 3.598 5.430 1.008
    15~20 38.29 5.729 7.227 -2.430
    20~50 49.89 10.604 12.923 -8.274
    >50 37.79 19.554 23.345 -18.097
    3DTime-QPENet Total 38.28 1.956 4.331 -0.089 0.869 0.748
    0.1~5 35.94 0.937 1.841 0.567
    5~15 49.38 4.004 5.516 -1.043
    15~20 49.09 6.773 8.452 -3.178
    20~50 46.42 10.778 13.525 -5.371
    >50 31.58 16.859 21.861 -6.650
    3DEcho-QPENet Total 34.91 1.847 4.018 -0.082 0.885 0.783
    0.1~5 32.99 0.924 1.729 0.048
    5~15 43.79 3.660 5.134 -0.647
    15~20 44.61 6.317 7.918 -3.085
    20~50 41.53 9.633 12.037 -5.824
    >50 32.62 17.223 21.882 -12.898
    下载: 导出CSV

    表  2  不同雷达定量降水估测方法对比

    时间 降水估测方法 RE/% MAE/mm RMSE/mm Bias CC
    2022年6月14日09:00(BJT) Z-R关系 66.14 8.541 14.528 -1.572 0.730
    3DPoly-QPENet 37.73 3.703 6.710 -1.121 0.913
    3DTime-QPENet 51.75 5.131 8.414 -1.647 0.867
    3DEcho-QPENet 41.03 4.068 7.279 -1.462 0.908
    2022年9月8日19:00(BJT) Z-R关系 61.82 7.967 14.398 -1.654 0.728
    3DPoly-QPENet 48.23 4.185 7.374 -0.599 0.884
    3DTime-QPENet 52.03 5.383 9.243 1.122 0.870
    3DEcho-QPENet 47.80 4.148 7.308 -0.617 0.886
    下载: 导出CSV
  • [1] MARSHALL J S, PALMER W Mc K. The distribution of raindrops with size[J]. J Atmos Sci, 1948, 5(4): 165-166.
    [2] NAYAK D R, MAHAPATRA A, MISHRA P. A survey on rainfall prediction using artificial neural network[J]. Int J Comput Appl, 2013, 72 (16): 32-40.
    [3] DARJI M P, DABHI V K, PRAJAPATI H B. Rainfall forecasting using neural network: A survey[C]//2015 International Conference on Advances in Computer Engineering and Applications. Ghaziabad: IEEE. 2015: 706-713.
    [4] WEI T, LEI Y, LIU W, et al. Ground radar precipitation estimation with deep learning approaches in meteorological private cloud[J]. J Cloud Comput, 2020, 9(1): 1-12.
    [5] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[M]//Neurocomputing: Foundations of Research. Cambridge: MIT Press, 1988: 696-699.
    [6] 皇甫江, 胡志群, 郑佳锋, 等. 利用深度学习开展偏振雷达定量降水估测研究[J]. 气象学报, 2022, 80(4): 565-577.
    [7] 蔡康龙, 胡志群, 谭浩波, 等. 利用卷积神经网络开展偏振雷达定量降水估测研究[J]. 热带气象学报, 2024, 40(1): 64-74.
    [8] 张永华. 基于深度学习的华南登陆台风偏振雷达定量降水估测研究[D]. 南京: 南京信息工程大学, 2022.
    [9] PENG X, LI Q, JING J. CNGAT: A graph neural network model for radar quantitative precipitation estimation[J]. IEEE Trans Geosci Remote Sens, 2021, 60(1): 1-14.
    [10] 郑玉, 魏鸣, 李南. 基于循环神经网络改进雷达定量估测强降水[J]. 中国科技论文, 2020, 15(5): 585-592.
    [11] TANG Y, YANG X, ZHANG W, et al. Radar and rain gauge merging-based precipitation estimation via geographical-temporal attention continuous conditional random field[J]. IEEE Trans Geosci Remote Sens, 2018, 56(9): 5135-5146.
    [12] MORAUX A, DEWITTES S, Cornelis B, et al. A deep learning multimodal method for precipitation estimation[J]. Remote Sens, 2021, 13 (16): 3278.
    [13] GAVAHI K, FOROUMAND E, MORADKHANI H. A deep learning-based framework for multi-source precipitation fusion[J]. Remote Sens Environ, 2023, 295: 113723.
    [14] WANG L. Improving radar quantitative precipitation estimation through optimizing radar scan strategy and deep learning[D]. Colorado: Colorado State University, 2024.
    [15] KIM Y, HONG S. Very short-term prediction of weather radar-based rainfall distribution and intensity over the Korean peninsula using convolutional long short-term memory network[J]. Asia-Pac J Atmos Sci, 2022, 58(4): 489-506.
    [16] MA Y, CHANDRASEKAR V, BISWASi S K. A Bayesian correction approach for improving dual-frequency precipitation radar rainfall rate estimates[J]. J Meteor Soc Japan Ser Ⅱ, 2020, 98(3): 511-525.
    [17] 易雷. 基于时空预测网络和卷积神经网络的短临降水预测研究[D]. 南京: 南京信息工程大学, 2022.
    [18] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]//Proceedings of the IEEE international conference on computer vision. Santiago: IEEE, 2015: 4489-4497.
    [19] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference. Munich: Springer International Publishing, 2015: 234-241.
    [20] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP SS, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016: 19th International Conference, Athens: Springer International Publishing, 2016.
    [21] ZHANG Y, LIU L, BI S, et al. Analysis of dual-polarimetric radar variables and quantitative precipitation estimators for landfall typhoons and squall lines based on disdrometer data in southern China[J]. Atmosphere, 2019, 10(1): 30.
    [22] GABELLA M, NOTARPIETRO R. Ground clutter characterization and elimination in mountainous terrain[C]//Proceedings of ERAD. 2002, 305(311).
    [23] HELMUS J J, COLLIS S M. The Python ARM Radar Toolkit(Py-ART), a library for working with weather radar data in the Python programming language[J]. J Open Res Softw, 2016, 4.
    [24] ZHANG Y, BI S, LIU L, et al. Deep learning for polarimetric radar quantitative precipitation estimation during landfalling typhoons in South China[J]. Remote Sens, 2021, 13(16): 3157.
    [25] NEYMAN J. On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection[M]//Breakthroughs in statistics: Methodology and distribution. NY: Springer New York, 1992: 123-150.
    [26] REN J, YU C, MA K, et al. Balanced MSE for Imbalanced Visual Regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4175-4184.
    [27] LEGATES D R. Rea-time calibration of radar precipitation estimates[J]. Prof Geogr, 2000, 52(2): 235-246.
    [28] 高烽, 周新尧, 孔凡超, 等. 滑动时间窗长度对太行山区雷达反演降水的影响[J]. 气象, 2018, 44(4): 538-547.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 修回日期:  2025-04-03
  • 刊出日期:  2025-04-20

目录

    /

    返回文章
    返回