Analysis of the Causes of a Lightning Injury Incident in Zhongshan City
-
摘要: 根据广东省中山市多波段雷达监测数据和广东省闪电定位系统资料,结合模型计算,对2024年4月5日中山市狮头山一次雷击双树致人“假死”事件进行调查分析发现,这次事件是在降雨云团南部外围边沿地带发生的,事故发生时,事故地点有短时阵雨,闪电首先击中两颗树木,然后通过旁络闪击击中受害者致“假死”,“假死”者身边3名同行人员却没有受伤。结合目击者的描述,造成此事件的闪电具有两个接地点,电流强度为-20 kA。“假死”者离树木距离仅0.2 m,经计算有2.312 kA直接闪击到受害者身上,同时还承受了348.04 kV跨步电压伤害;目击者距离树木1.1 m,承受跨步电压值约为22.6 kV,小于其对应体重可承受跨步电压值43.96 kV,故无受伤,但有手指麻痹的感觉。同行小孩距离树木2~3 m,仅承受3.61~7.56 kV的跨步电压,故没有影响。Abstract: Based on multiband radar monitoring data from Zhongshan City and Guangdong lightning positioning system data, combining model calculations, we investigated a lightning strike incident on Shitou Mountain in Zhongshan City on April 5, 2024. This event, which caused transient cardiorespiratory arrest and suspended animation in one victim, occurred at the southern periphery of a convective cloud cluster during brief showers. The lightning channel featured dual-ground termination points (peak current:-20 kA) that preferentially struck two adjacent trees before side-flashing to a victim located only 0.2 m away. Calculations indicate the victim experienced both a direct strike (2.312 kA) and step voltage (348.04 kV). A witness standing 1.1 m from the tree was exposed to about 22.6 kV step voltage (below the 43.96 kV safety threshold), reporting only finger numbness. The accompanying children at 2-3 m distance experienced 3.61-7.56 kV step voltage with no effects.
-
Key words:
- lightning strike /
- suspended animation /
- thunderstorm weather /
- side flash /
- step voltage
-
表 1 树木1、树木2、“假死”者首次分流和二次分流的雷电流值
分流方式 分流载体 首次分流系数 首次分流电流/kA 可能击穿距离/m 分流载体 二次分流系数 二次分流电流/kA 可能击穿距离/m 1 树木1 0.66 -13.2 5.28 - - - - 树木2 0.34 -6.8 2.72 树木2 0.66 -4.488 0.897 6 “假死”者 0.34 -2.312 0.46 2 树木1 0.34 -6.8 2.72 - - - - 树木2 0.66 -13.2 5.28 树木2 0.66 -8.712 1.742 4 “假死”者 0.34 -4.488 0.897 6 表 2 树木附近人员可能受到的雷电流跨步电压值
地面电阻率ρ/(Ω·m) 两脚间距s/m 人体电阻Rb/Ω 入地电流I/kA 距离入地点r/m 可能受到跨步电压/kV 300 0.3 1 000 6.8 0.2 348.04 300 0.3 1 000 6.8 1.1 22.60 300 0.3 1 000 6.8 2.0 7.56 300 0.3 1 000 6.8 3.0 3.61 300 0.3 1 000 13.2 5.0 2.55 300 0.3 1 000 13.2 5.5 2.12 -
[1] 路庆昌, 张图, 王琴, 等. 时空角度下极端天气的可达性指标比较[J]. 浙江大学学报(工学版), 2024, 58(7): 1 387-1 396. [2] 李思媛, 陈笑娟, 陈小雷, 等. 基于多源数据的河北省雷电灾害风险评估研究[J]. 灾害学, 2024, 39(4): 153-161. [3] 徐沈, 王金虎, 王宇豪, 等. 苏州市雷电灾害致灾因子危险性区域差异研究[J]. 气象科技进展, 2023, 13(5): 62-66. [4] HOLLE R L. The number of documented global lightning fatalities[C]//Preprints, 24th Int Lightning Detection Conf and SixthInt Lightning Meteorology Conf, San Diego, CA, Vaisala, 2016: 1-4. [5] NAVARRETE-ALDANA N, COOPER M A, HOLLE R L. Lightning fatalities in Colombia from 2000 to 2009[J]. Nat Hazards, 2014, 74 (3): 1 349-1 362. [6] SHRIGIRIWAR M B, GADHARI R K, JADHAO V T, et al. Study of fatalities due to lightning in Nagpur region of Maharashtra[J]. J Indian Acad Forensic Med, 2014, 36 (3): 259-262. [7] DEWAN A, HOSSAIN M F, RAHMAN M M, et al. Recent lightning-related fatalities and injuries in Bangladesh[J]. Weather Clim Soc, 2017, 9(3): 575-589. [8] 马明, 吕伟涛, 张义军, 等. 我国雷电灾害及相关因素分析[J]. 地球科学进展, 2008, 23(8): 856-865. [9] ZHANG W J, MENG Q, MA M, et al. Lightning casualties and damages in China from 1997 to 2009[J]. Nat Hazards, 2011, 57(2): 465-476. [10] 殷启元, 郭泽勇, 张义军, 等. 1995—2018年广东地区雷灾伤亡特征[J]. 热带气象学报, 2021, 37(3): 512-520. [11] ELSOM D M, WEBB J D C, ENNO S E, et al. Lightning fatalities andinjuries in the UK in 2015 and lightning safety advice for hill and mountain walkers[J]. Int J Meteor, 2016, 41(397): 105-126 [12] 殷启元, 范祥鹏, 张义军, 等. 一次"晴天霹雳"致死事件分析[J]. 气象学报, 2019, 77(2): 292-302. [13] 殷启元, 林蟒, 杨思鹏, 等. 基于机器学习的目标点雷电安全风险预警方法研究[J]. 热带气象学报, 2024, 40(2): 217-225. [14] 黄怡鋆, 樊亚东, 王红斌, 等. 组合八邻域跟踪算法监测全闪电雷暴活动时空演变过程及特征[J]. 电工技术学报, 2024, 39(5): 18536-1 547. [15] 黄骏, 胡东明. 广州番禺CINRAD—SA新一代多普勒天气雷达简介[J]. 广东气象, 2002(4): 35-36. [16] 倾鹏程, 谢啸天, 汤沛. 中山市X波段相控阵雷达选址分析[J]. 气象水文海洋仪器, 2022, 39(1): 67-69. [17] 梅雨菲, 陈生, 刘陈帅, 等. 珠海X波段双偏振相控阵雷达定量降水估测产品质量评估[J]. 热带气象学报, 2023, 39(4): 614-621. [18] 王彤, 徐黄飞, 李明霞, 等. 广东省闪电监测系统探测效能对比评估[J]. 广东气象, 2024, 46(3): 107-112. [19] 张悦, 吕伟涛, 陈绿文, 等. 基于人工引雷的粤港澳闪电定位系统性能评估[J]. 应用气象学报, 2022, 33(3): 329-340. [20] COOPER M A, HOLLE R L, ANDREWS C J. Distribution of lightning injury mechanisms[C]//International Conference on Lightning Protection. IEEE, 2017. [21] 邱毓昌, 施围, 张文元. 高电压工程[M]. 西安: 西安交通大学出版社, 1995: 38-40. [22] Energy Development and Power Generation Committee of the IEEE Power Engineering Society. IEEE Std 665-1995 IEEE guide for generating station grounding[S]. New York, USA: The Institute of Electrical and Electronics Engineers, Inc, 1996. [23] DALZIEL C F, LEE W R. Reevaluation of lethal electric currents[J]. IEEE Trans Ind Gen Appl, 1968, 4(5): 467-476. [24] DAWALIBI F P, SOUTHEY R D, BAISHIKI R S. Validity of conventional approaches for calculating body currents resulting from electric shocks[J]. IEEE Trans Power Del, 1990, 5(2): 613-626. [25] 黄克俭, 张克, 尹正旺, 等. 一次跨步电压雷击伤亡事故的定量分析[C]//中国国际防雷论坛. 中国气象学会, 长沙, 2010: 265-266 [26] 何金良, 曾嵘. 电力系统接地技术[M]. 北京: 科学出版社, 2007: 608. [27] 张义军, 周秀骥. 雷电研究的回顾和进展[J]. 应用气象学报, 2006, 17(6): 829-834. [28] 司莉青, 苑尚博, 赵凤君, 等. 雷电, 雷击火发生与人类活动关系[J]. 林业科学, 2022, 58(11): 1-9. -