ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2022年3月26日闽南地区冰雹过程多源雷达特征分析

梁秋枫 郑辉 苏蕾 郭秀凤

梁秋枫, 郑辉, 苏蕾, 郭秀凤. 2022年3月26日闽南地区冰雹过程多源雷达特征分析[J]. 热带气象学报, 2025, 41(4): 504-518. doi: 10.16032/j.issn.1004-4965.2025.044
引用本文: 梁秋枫, 郑辉, 苏蕾, 郭秀凤. 2022年3月26日闽南地区冰雹过程多源雷达特征分析[J]. 热带气象学报, 2025, 41(4): 504-518. doi: 10.16032/j.issn.1004-4965.2025.044
LIANG Qiufeng, ZHENG Hui, SU Lei, GUO Xiufeng. Analysis of Severe Hail Characteristics in Southern Fujian on 26 March 2022 Using Multi-Source radar[J]. Journal of Tropical Meteorology, 2025, 41(4): 504-518. doi: 10.16032/j.issn.1004-4965.2025.044
Citation: LIANG Qiufeng, ZHENG Hui, SU Lei, GUO Xiufeng. Analysis of Severe Hail Characteristics in Southern Fujian on 26 March 2022 Using Multi-Source radar[J]. Journal of Tropical Meteorology, 2025, 41(4): 504-518. doi: 10.16032/j.issn.1004-4965.2025.044

2022年3月26日闽南地区冰雹过程多源雷达特征分析

doi: 10.16032/j.issn.1004-4965.2025.044
基金项目: 

福建省自然科学基金项目 2022J011081

详细信息
    通讯作者:

    郑辉,男,福建省人,高级工程师,主要从事天气预报及天气雷达灾害性天气监测预警应用研究。E-mail:zhhui_zoly@sina.com

  • 中图分类号: P412.25

Analysis of Severe Hail Characteristics in Southern Fujian on 26 March 2022 Using Multi-Source radar

  • 摘要: 利用福建厦门海沧X波段双偏振相控阵雷达、S波段多普勒双偏振天气雷达和福建泉州S波段多普勒单偏振天气雷达,结合常规气象观测资料,对2022年3月26日发生在闽南地区的一次冰雹过程进行分析,得到以下结论。(1)利用三部雷达对冰雹超级单体进行协同观测,可获得更加全面的雷达冰雹特征,有利于提高灾害性天气的预警能力。(2)厦门海沧X波段相控阵雷达完整观测到10 min内钩状回波演变形成的过程,ZDR弧、KDP足、ZDR环、CC环等双偏振特征体现出超级单体内粒子相态的变化。强回波后侧受衰减影响出现“V”型缺口甚至回波缺失,强回波区域内出现KDP洞表明该区域存在大冰雹。冰雹增长时,回波强度增强、ZDRKDP大值区减少、CC降低;冰雹降落时,融化层附近ZDR增大、KDP显著增加、CC降低。(3)泉州S波段雷达观测到钩状回波、有界弱回波、三体散射、风暴顶辐散等经典冰雹特征;HT和VIL快速下降体现出冰雹降落的特征;中气旋的增强和减弱对于判断超级单体的强弱变化有较好的指示意义。(4)X波段相控阵雷达探测细腻程度优于海沧S波段雷达,在有效回波内KDP表现优于S波段雷达,在液态粒子探测方面X波段相控阵雷达更有优势。X波段相控阵雷达对15 dBZ以下和70 dBZ以上的回波探测能力低于S波段雷达,未探测到超级单体前侧的阵风锋,其探测强度较S波段雷达偏低约5~20 dBZ。

     

  • 图  1  泉州S波段多普勒雷达、厦门海沧S波段多普勒雷达和X波段相控阵雷达位置、2022年3月26日15:11—16:50泉州S波段多普勒雷达风暴追踪降雹单体移动路径

    图  2  2022年3月26日08时中尺度分析(a)和探空图(b)

    图  3  2022年3月26日冰雹超级单体演变过程(单位:dBZ)

    a. 14:29;b. 15:47;c. 16:29;d. 17:00。

    图  4  2022年3月26日15:11—16:50时段泉州S波段天气雷达冰雹超级单体参数演变过程

    最大基本反射率Z(单位:dBZ)及其所在的高度HT(单位:km)、超级单体顶高TOP(单位:km)、垂直累积液态含水量VIL(单位:kg· m-2)和垂直累积液态含水量密度VILD(单位:g·m-3),红色断线为VILD=4 g·m-3

    图  5  2022年3月26日15:32—16:50时段冰雹超级单体中气旋特征演变过程

    a.旋转速度(单位:m·s-1);b.旋转半径(单位:km);c.垂直涡度(单位:10-2 s-1)。

    图  6  2022年3月26日15:47时泉州S波段天气雷达基本反射率、径向速度

    a~d.0.5 °、2.4 °、4.3 °、6.0 °仰角基本反射率(单位:dBZ);e~f.0.5°、2.4°、4.3°、6.0°仰角径向速度(单位:m·s-1

    图  7  2022年3月26日15:58时泉州S波段天气雷达基本反射率、径向速度

    a~d.0.5 °、1.5 °、2.4 °、6.0 °仰角基本反射率(单位:dBZ);e~f.0.5 °、1.5 °、2.4 °、6.0 °仰角径向速度(单位:m·s-1)。

    图  8  2022年3月26日15:40—15:50 X波段相控阵雷达2.7 °仰角基本反射率(单位:dBZ)每2 min演变

    图  9  2022年3月26日15:47时X波段双偏振相控阵雷达产品

    a~d.2.7 °、6.3 °、8.1 °、17.1 °仰角基本反射率(单位:dBZ);e~g.2.7 °、8.1 °、17.1 °仰角差分反射率(单位:dB);h~i.2.7 °、17.1 °差分相移率(单位:deg·km-1);j~l.2.7 °、8.1 °、17.1 °仰角相关系数;m.9.9 °仰角径向速度(单位:m·s-1)。

    图  10  2022年3月26日15:58时X波段双偏振相控阵雷达产品

    a~c.2.7 °、8.1 °、20.7 °仰角基本反射率(单位:dBZ);d~f.2.7 °、8.1 °、20.7 °仰角差分反射率(单位:dB);g~i.2.7 °、8.1 °、20.7°差分相移率(单位:deg·km-1);j~l.2.7 °、8.1 °、20.7 °仰角相关系数。

    图  11  2022年3月26日15:40—16:00间隔4 min X波段双偏振相控阵雷达剖面产品

    a~f. 基本反射率(单位:dBZ);g~l. 差分反射率(单位:dB);m~r. 差分相移率(单位:deg·km-1);s~x. 相关系数;y~ⅴ.水凝物分类。

    图  12  2022年3月26日15:51时厦门海沧S波段与X波段雷达冰雹特征观测对比

    a~d.S波段0.5 °、2.7 °、9.9 °、19.5 °仰角基本反射率(单位: dBZ);e~h.X波段0.9 °、2.4 °、9.9 °、20.7 °仰角基本反射率(单位:dBZ);i、k.S波段2.7 °、9.9 °仰角差分反射率(单位:dB);j、l.X波段2.4 °、9.9 °仰角仰角差分反射率(单位:dB);m、o.S波段2.7 °、9.9 °仰角差分相移率(单位:deg·km-1);n、p.X波段2.4 °、9.9 °仰角差分相移率(单位:deg·km-1)。

    表  1  厦门海沧X波段双偏振相控阵雷达的主要技术指标

    参数名称 X波段相控阵雷达参数值 参数名称 X波段相控阵雷达参数值
    天线形式 一维阵列天线 雷达波长/cm 3.2
    天线高度/m 393 峰值功率/W 300
    工作频率/GHz 9.3~9.5 动态范围/dB ≥85
    接收机噪声系灵敏/dB ≤3.3 脉冲宽度/μs 20
    脉冲重复频率/Hz 400~4 000 径向分辨率/m 30
    最大探测距离/km 42 水平波束宽度/° 3.6
    仰角层数 12 垂直波束宽度/° 1.8
    下载: 导出CSV

    表  2  2022年3月26日08时厦门探空站强对流参数

    时间 CAPE/(J·kg-1) K/℃ SI CIN/(J·kg-1) WBZ/km H-20℃/km
    08:00 451.1 37.6 -0.24 0 4.2 7.9
    下载: 导出CSV
  • [1] 俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006.
    [2] CHURCH C R, DOSWELL C A, BURGESS D W. The tornado: Its structure dynamics prediction and hazards[M]. Boston: Wiley, 1993.
    [3] BROWNINGK A, LUDLAM F H, MACKLIN W C. The density and structure of hailstones[J]. Quart J Roy Meteor Soc, 1963, 89(379): 75- 84.
    [4] MARWITZ J D. The structure and motion of severe hailstorms. Part Ⅰ: Supercell storms[J]. J Appl Meteor, 1972, 11(1): 166-179.
    [5] 吴剑坤, 俞小鼎. 强冰雹天气的多普勒天气雷达探测与预警技术综述[J], 干旱气象, 2009, 27(3): 197-206.
    [6] WITT A, ELITS M D, STUMPF G J, et al. An enhanced hail detection al-gorithm for the WSR-88D[J]. Wea Forecasting, 1998, 13(2): 286- 303.
    [7] ZRNIC D S. Three-body scattering produces precipitation signature of special diagnostic value[J]. Radio Sci, 1987, 22(1): 76-86.
    [8] 张晓芳, 马中元, 王立志, 等. "2021-3-30"江西大冰雹超级单体的回波结构与关键机制分析[J]. 热带气象学报, 2023, 39(3): 374-385.
    [9] 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比[J]. 应用气象学报, 2022, 33(4): 414-428.
    [10] 徐芬, 郑媛媛, 肖卉, 等. 江苏沿江地区一次强冰雹天气的中尺度特征分析[J]. 气象, 2016, 42(5): 567-577.
    [11] 刁广秀, 朱君鉴, 黄秀韶, 等. VIL和VIL密度在冰雹云判据中的应用[J]. 高原气象, 2008, 27(5): 1 131-1 139.
    [12] 郑媛媛, 俞小鼎. 一次典型超级单体风暴的多普勒天气雷达观测分析[J]. 气象学报, 2004, 62(3): 317-328.
    [13] 潘佳文, 蒋璐璐, 魏鸣, 等. 一次强降水超级单体的双偏振雷达观测分析[J]. 气象学报, 2020, 78(1): 86-100.
    [14] 吴举秀, 潘佳文, 魏鸣, 等. 不同尺寸冰雹S波段双偏振雷达偏振量特征统计[J]. 热带气象学报, 2022, 38(2): 193-202.
    [15] 曹舒娅, 孙伟, 韦芬芬, 等. 双偏振雷达在江苏"7.6"降雹过程中的应用分析[J]. 大气科学学报, 2021, 44(4): 549-557.
    [16] 刁秀广, 郭飞燕. 2019年8月16日诸城超级单体风暴双偏振参量结构特征分析[J]. 气象学报, 2021, 79(2): 181-195.
    [17] 马建立, 苏德斌, 金永利, 等. X波段双线性偏振雷达电磁波衰减对冰雹识别的影响[J]. 高原气象, 2012, 31(3): 825-835.
    [18] 胡志群, 刘黎平, 楚荣忠, 等. X波段双线偏振雷达不同衰减订正方法对比及其对降水估测影响研究[J]. 气象学报, 2008, 66(2): 251- 261.
    [19] 王晗, 刘黎平, 张扬. X波段双线偏振雷达不同衰减订正法对比分析[J]. 气象科技, 2018, 46(1) : 1-9.
    [20] 肖柳斯, 胡东明, 陈生, 等. X波段双偏振相控阵雷达的衰减订正算法研究[J]. 气象, 2021, 47(6): 703-716.
    [21] 苏永彦, 刘黎平. S波段双偏振雷达和X波段相控阵天气雷达中气旋识别结果对比[J]. 气象, 2022, 48(2): 229-244.
    [22] 汤兴芝, 俞小鼎, 熊秋芬, 等. 鄂西南冬末一次罕见的强冰雹过程分析[J]. 气象, 2022, 48(5): 618-632.
    [23] ANDRA D L. The origin and evolution of the WSR-88D mesocyclone recognition nomogram∥28th Conference on Radar Meteorology. Austin: Amer Meteor Soc, 1997, 364-365.
    [24] WITT A, NELSON S. The relationship between upper-level divergent outflow magnitude as measured by Doppler radar and hailstorm intensity// 22nd Radar Meteorology Conference. Boston: American Meteorology Society, 108-111.
    [25] 郭艳. 大冰雹指标TBSS在江西的应用研究[J]. 气象, 2010, 36(8): 40-46.
    [26] LEMON L R. The radar"three-body scatter spike": An operational large-hail signature[J]. Wea Forecasting, 1998, 13: 327-340.
    [27] ROMINE G S, BURGESS D, WIHELMSON R B. A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma city area tornadic supercell[J]. Mon Wea Rev, 2008, 136(8): 2 849-2 870.
    [28] KUMJIAN M R, RYZHKOV A V, MELNIKOV V M, et al. Rapid-scan super-resolution observations of a cyclic supercell with a dualpolarization WSR-88D[J]. Mon Wea Rev, 2010, 138(10): 3 762-3 786.
    [29] 潘佳文, 魏鸣, 郭丽君, 等. 闽南地区大冰雹超级单体演变的双偏振特征分析[J]. 气象, 2020, 46(12): 1 608-1 620.
    [30] KUMJIAN M R, RYZHKOV A V. Polarimetric signatures in supercell thunderstorms[J]. J Appl Meteor Climatol, 2008, 47(7): 1 940-1 961.
    [31] 刘黎平. 双线偏振多普勒天气雷达估测混合区降雨和降雹方法的理论研究[J]. 大气科学, 2022, 26(6): 761-772.
    [32] 陈龙, 唐明晖, 唐佳, 等. 湘东北一次降雹超级单体过程的双偏振雷达回波特征[J]. 暴雨灾害, 2023, 42(2): 211-222.
    [33] HALL M, GODDARD J, CHERRY S M. Identification of dydrometeors and other targets by dual-polarization radar[J]. Radio Science, 1984, 19(1): 132-140.
    [34] HUBBERT J, BRINGI V N, CAREY L D, et al. CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado [J]. J Appl Meteor, 1998, 37(8): 749-775.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-21
  • 修回日期:  2024-06-28
  • 网络出版日期:  2025-09-04
  • 刊出日期:  2025-08-20

目录

    /

    返回文章
    返回