ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1998—2013 TRMM卫星观测的华南暖季极端降水与非极端降水对流系统宏微观特征

韦慧华 符娇兰 田志广 陈浩 徐伟新

韦慧华, 符娇兰, 田志广, 陈浩, 徐伟新. 基于1998—2013 TRMM卫星观测的华南暖季极端降水与非极端降水对流系统宏微观特征[J]. 热带气象学报, 2025, 41(4): 541-552. doi: 10.16032/j.issn.1004-4965.2025.047
引用本文: 韦慧华, 符娇兰, 田志广, 陈浩, 徐伟新. 基于1998—2013 TRMM卫星观测的华南暖季极端降水与非极端降水对流系统宏微观特征[J]. 热带气象学报, 2025, 41(4): 541-552. doi: 10.16032/j.issn.1004-4965.2025.047
WEI Huihua, FU Jiaolan, TIAN Zhiguang, CHEN Hao, XU Weixin. Macro and Micro Characteristics of Extreme Precipitation Systems and Non-extreme Precipitation Systems over South China During the Warm Season Based on TRMM Observations from 1998 to 2013[J]. Journal of Tropical Meteorology, 2025, 41(4): 541-552. doi: 10.16032/j.issn.1004-4965.2025.047
Citation: WEI Huihua, FU Jiaolan, TIAN Zhiguang, CHEN Hao, XU Weixin. Macro and Micro Characteristics of Extreme Precipitation Systems and Non-extreme Precipitation Systems over South China During the Warm Season Based on TRMM Observations from 1998 to 2013[J]. Journal of Tropical Meteorology, 2025, 41(4): 541-552. doi: 10.16032/j.issn.1004-4965.2025.047

基于1998—2013 TRMM卫星观测的华南暖季极端降水与非极端降水对流系统宏微观特征

doi: 10.16032/j.issn.1004-4965.2025.047
基金项目: 

国家自然科学基金 42275054

详细信息
    通讯作者:

    徐伟新,男,广东省人,教授,主要从事卫星雷达遥感、中尺度气象、热带气旋、云降水微物理、雷暴闪电等研究工作。E-mail: xuwx25@mail.sysu.edu.cn

  • 中图分类号: P426.62

Macro and Micro Characteristics of Extreme Precipitation Systems and Non-extreme Precipitation Systems over South China During the Warm Season Based on TRMM Observations from 1998 to 2013

  • 摘要: 本研究利用Tropical Rainfall Measuring Mission(TRMM)卫星数据研究了华南地区1998—2013年暖季(4—9月)极端降水系统(Extreme Precipitation Event, 简称EPE)的精细结构和环境特征,并对比分析了非极端降水系统(NonEPE)包括雷暴(Thunderstorm)和未造成极端降水的强对流系统NonEPE_Inten。利用华南地区约1 500个站点的小时降水数据,1981—2013年气候统计的99.9th作为极端小时降水阈值。EPE(NonEPE)定义为降水中心强度达到(未达到)极端小时降水阈值且降水面积至少为100 km2的对流系统。结果表明,华南EPE对流核的水平尺度达到了中β尺度(45~50 km),与雷暴尺度相当;大部分EPE发生在组织性强的中尺度对流系统(>100 km)内,NonEPE多数发生在尺度相对较小的对流系统(< 100 km)中。卫星微波观测表明EPE含有丰富的冰相粒子,冰相过程显著。EPE与强对流的垂直结构具有显著差异,它们的雷达反射率因子在融化层以下分别增长了6~7 dBZ和2~3 dBZ,表明EPE暖雨(碰并)过程更活跃,其雨滴在暖云中高效增长。EPE的环境特征表现为整层大气相对湿度高,700~925 hPa风切变强,暖云厚度更深厚,但对流有效位能(CAPE)较弱,低层气温较低。

     

  • 图  1  研究区域地形图(a);地面小时雨强累计概率(Cumulative Distribution Function,CDF)分布图(b);降水系统(PF)、对流系统(ConvPF)和极端降水系统(EPE)例子:星载雷达反演的近地面降水(c),Parent_PF用最大的椭圆标出,ConvPF包含其中,用小椭圆标出,ConvPF达到极端小时降水阈值即EPE;层状性降水与对流性降水类型划分(d)

    图  2  1998—2013年极端降水系统频率分布(a);1998—2013年站点观测的极端小时降水频率分布(b)

    分辨率为1 °×1 °。

    图  3  不同类型对流系统累计概率(Cumulative Distribution Function,CDF,下文同)分布图:最大降水强度(a);闪电频率(b)

    不同符号与颜色表示不同类型的对流,包括EPE(红色三角形)、NonEPE(蓝色圆形)、NonEPE_Inten(橙色星型)、Thunderstorm(绿色方形)。

    图  4  图 3,ConvPF水平尺度(a)、ConvPF面积(b)、Parent_PF水平尺度水平结构(c)和Parent_PF层状性降水面积比例(d)

    图  5  各类对流系统箱线图:20 dBZ回波顶高(a)、30 dBZ回波顶高(b)、85 GHz最小极化修正亮温(c)、37 GHz最小极化修正亮温(d)

    矩形箱上下两端边分别为25百分位数、75百分位数,矩形箱中的横线为中位数,异常值分别为第5百分数和第95百分数,不同颜色表示不同的对流。

    图  6  不同类型对流的雷达回波的高度-频率等值线图(Contoured Frequency by Altitude Diagrams,CFAD)和垂直廓线:EPE(a)、NonEPE(b)、Median Profile(c)、Thunderstorm(d)、NonEPE_Inten(e)、Median Profile(f)

    实线、虚线与点线分别表示中位数、第10百分位数与第90百分数。(c)、(f)为不同类型对流的中位数垂直廓线,不同颜色表示不同类型对流。

    图  7  不同对流物理量箱线图与环境变量差异廓线:CAPE(a)、CIN(b)、气温廓线(c)、暖云厚度(d)、700~925 hPa的风切变(e)、相对湿度廓线(f)

    不同颜色的廓线表示EPE与不同系统相减。

    表  1  不同类型的对流系统的定义及样本数量,时间范围为1998—2013年4—9月(包含台风降水有关的对流系统),空间范围为研究区域的陆地

    类别 对流系统定义 样本数量
    EPE Max nearsurf rainrate ≥50.4 mm·h-1 4 661
    NonEPE Max nearsurf rainrate: 5~50 mm·h-1 36 088
    NonEPE_Inten NonEPE & echotop30 ≥8 km 2 490
    Thunderstorm Flashrate ≥1 min-1 5 546
    下载: 导出CSV
  • [1] LUO Y, WANG H, ZHANG R, et al. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and the Yangtze and Huai river basin[J]. J Climate, 2013, 26(1): 110-132.
    [2] WANG H, LUO Y, JOU B J. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: observational analysis[J]. J Geophys Res Atmos, 2014, 119(23): 13 206-13 232.
    [3] DU Y, CHEN G. Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season[J]. J Climate, 2019, 32(24): 8 813-8 833.
    [4] DU Y, CHEN G. Heavy rainfall associated with double low-level jets over southern China. Part Ⅰ: Ensemble-based analysis[J]. Mon Wea Rev, 2018, 146(11): 3 827-3 844.
    [5] DU Y, CHEN G. Heavy rainfall associated with double low-level jets over southern China. Part Ⅱ: Convection initiation[J]. Mon Wea Rev, 2019, 147(2): 543-565.
    [6] YING M, YANG Y, CHEN B, et al. Climatic variation of tropical cyclones affecting China during the past 50 years[J]. Sci China Earth Sci, 2011, 54(8): 1 226-1 237.
    [7] LIU H, HUANG X, FEI J, et al. Characteristics and preliminary causes of extremely persistent heavy rainfall generated by landfalling tropical cyclones over China[J]. EARTH SPACE SCI, 2022, 9(4): e2022EA002238.
    [8] 孙建华, 赵思雄. 华南"94·6"特大暴雨的中尺度对流系统及其环境场研究Ⅱ. 物理过程、环境场以及地形对中尺度对流系统的作用[J]. 大气科学, 2002, 26(5): 633-646.
    [9] WU M, LUO Y, CHEN F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal south China[J]. J Appl Meteor Climatol, 2019, 58(8): 1 799-1 819.
    [10] 黄土松, 李真光, 包澄澜, 等. 华南前汛期暴雨[M]. 广州: 广东科技出版社, 1986.
    [11] 陈红, 赵思雄. 海峡两岸及邻近地区暴雨试验(HUAMEX) 期间暴雨过程及环流特征研究[J]. 大气科学, 2004, 28(1): 32-47.
    [12] ZHANG R, NI Y, LIU L, et al. South China heavy rainfall experiments (SCHeREX)[J]. J Meteor Soc Japan, 2011, 89A: 153-166.
    [13] LUO Y, ZHANG R, WAN Q, et al. The southern China monsoon rainfall experiment (SCMREX)[J]. Bull Amer Meteor Soc, 2017, 98(5): 999-1 013.
    [14] 何立富, 陈涛, 孔期. 华南暖区暴雨研究进展[J]. 应用气象学报, 2016, 27(5): 559-569.
    [15] REN F, GLEASON B, EASTERLING D. Typhoon impacts on China's precipitation during 1957-1996[J]. AdvAtmos Sci, 2002, 19(5): 943-952.
    [16] HSU P C, LEE J Y, HA K J. Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China[J]. Int J Climatol, 2016, 36(3): 1 403-1 412.
    [17] LI H, WAN Q, PENG D, et al. Multiscale analysis of a record-breaking heavy rainfall event in Guangdong, China[J]. Atmos Res, 2020, 232: 104703.
    [18] HOUZE J R A, RASMUSSEN K L, ZULUAGA M D, et al. The variable nature of convection in the tropics and subtropics: a legacy of 16 years of the Tropical Rainfall Measuring Mission satellite[J]. Rev Geophys, 2015, 53(3): 994-1 021.
    [19] XU W, ZIPSER E J. Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes[J]. Geophys Res Lett, 2012, 39(7): L07802.
    [20] ZIPSER E J, CECIL D J, LIU C, et al. Where are the most intense thunderstorms on earth?[J]. Bull Amer Meteor Soc, 2006, 87(8): 1 057-1 072.
    [21] DEIERLING W, PETERSEN W A. Total lightning activity as an indicator of updraft characteristics[J]. J Geophys Res Atmos, 2008, 113 (D16): D16210.
    [22] ZIPSER E J. Deep cumulonimbus cloud systems in the tropics with and without lightning[J]. Mon Wea Rev, 1994, 122(8): 1 837-1 851.
    [23] HAMADA A, MURAYAMA Y, TAKAYABU Y N. Regional characteristics of extreme rainfall extracted from TRMM PR measurements[J]. J Climate, 2014, 27(21): 8 151-8 169.
    [24] HAMADAA, TAKAYABU Y N, LIU C, et al. Weak linkage between the heaviest rainfall and tallest storms[J]. Nat Commun, 2015, 6(1): 6 213.
    [25] GAO Y Y, LI M X, LUO Y L, et al. How do the convective and microphysical characteristics of extreme precipitation over the Pearl River Delta at monsoon coast vary with increasing rainfall extremity?[J]. Geophys Res Lett, 2023, 50(19): e2023GL104625.
    [26] SOHN B J, RYU G, SONG H, et al. Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements[J]. Mon Wea Rev, 2013, 141(11): 3 873-3 888.
    [27] XU W, CHEN H, WEI H, et al. Extreme precipitation produced by relatively weak convective systems in the tropics and subtropics[J]. Geophys Res Lett, 2022, 49(7): e2022GL098048.
    [28] LIU C, ZIPSER E J. ''Warm Rain'' in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data[J]. J Climate, 2009, 22 (3): 767-779.
    [29] LIU C, ZIPSER E J. Why does radar reflectivity tend to increase downward toward the ocean surface, but decrease downward toward the land surface?[J]. J Geophys Res Atmos, 2013, 118(1): 135-148.
    [30] YU S, LUO Y, WU C, et al. Convective and microphysical characteristics of extreme precipitation revealed by multisource observations over the Pearl River Delta at monsoon coast[J]. Geophys Res Lett, 2022, 49(2): e2021GL097043.
    [31] 杨忠林, 赵坤, 徐坤, 等. 江淮梅雨期极端对流微物理特征的双偏振雷达观测研究[J]. 气象学报, 2019, 77(1): 58-72.
    [32] YU S, LUO Y, WU C, et al. Subseasonal variations of convective and microphysical characteristics of extreme precipitation over the Pearl River Delta at monsoon coast[J]. J Geophys Res Atmos, 2023, 128(3): e2022JD037804.
    [33] KUMMEROW C, BARNES W, KOZU T, et al. The Tropical Rainfall Measuring Mission (TRMM) sensor package[J]. J Atmos Oceanic Technol, 1998, 15(3): 809-817.
    [34] KUMMEROW C, SIMPSON J, THIELE O, et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit [J]. J Appl Meteor Climatol, 2000, 39(12): 1 965-1 982.
    [35] CHRISTIAN H J, BLAKESLEE R J, GOODMAN S J, Lightning Imaging Sensor (LIS) for the Earth Observing System[R]. Huntsville AL: NASA/Marshall Space Flight Center, 1992.
    [36] CHRISTIAN H J, BLAKESLEE R J, GOODMAN S J, et al, Algorithm Theoretical Basis Document (ATBD) for the Lightning Imaging Sensor (LIS)[R]. Huntsville AL: NASA/Marshall Space Flight Center, 2000.
    [37] LIU C, ZIPSER E J, CECIL D J, et al. A cloud and precipitation feature database from nine years of TRMM observations[J]. J Appl Meteor Climatol, 2008, 47(10): 2 712-2 728.
    [38] LIU C, ZIPSER E J. Global distribution of convection penetrating the tropical tropopause[J]. J Geophys Res Atmos, 2005, 110(D23); D23104.
    [39] ZIPSER E J. Deep cumulonimbus cloud systems in the tropics with and without lightning[J]. Mon Wea Rev, 1994, 122(8): 1 837-1 851.
    [40] DEMOTT C A, RUTLEDGE S A. The vertical structure of TOGA COARE convection. Part Ⅰ: radar echo distributions[J]. J Atmos Sci, 1998, 55(17): 2 730-2 747.
    [41] CECIL D J, GOODMAN S J, BOCCIPPIO D J, et al. Three years of TRMM precipitation features. Part Ⅰ: radar, radiometric, and lightning characteristics[J]. Mon Wea Rev, 2005, 133(3): 543-566.
    [42] CECIL D J, BLANKENSHIP C B. Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers [J]. J Climate, 2012, 25(2): 687-703.
    [43] 张强, 赵煜飞, 范邵华. 中国国家级气象台站小时降水数据集研制[J]. 暴雨灾害, 2016, 35(2): 182-186.
    [44] 任芝花, 赵平, 张强, 等. 适用于全国自动站小时降水资料的质量控制方法[J]. 气象, 2010, 36(7): 123-132.
    [45] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quart J Roy Meteorol Soc, 2020, 146(730): 1 999-2 049.
    [46] LUO Y, WU M, REN F, et al. Synoptic situations of extreme hourly precipitation over China[J]. J Climate, 2016, 29(24): 8 703-8 719.
    [47] HOUZE R A. 100 years of research on mesoscale convective systems[J]. Meteor Monogr, 2018, 59(1): 17.1-17.54.
    [48] YUTER S E, HOUZE R A. Three-dimensional kinematic and microphysical evolution of florida cumulonimbus. Part Ⅱ: frequency distributions of vertical velocity, reflectivity, and differential Reflectivity[J]. Mon Wea Rev, 1995, 123(7): 1 941-1 963.
    [49] CRAVEN J P, BROOKS H E. Baseline climatology of sounding derived parameters associated with deep, moist convection[J]. Nat Wea Dig, 2004, 28(1): 13-24.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-03
  • 修回日期:  2024-06-19
  • 网络出版日期:  2025-09-04
  • 刊出日期:  2025-08-20

目录

    /

    返回文章
    返回