THE SPATIAL AND TEMPORAL DISTRIBUTION OF PRECIPITABLE WATER OVER CHONGQING REGION
-
摘要: 利用1966—2008年重庆地区34站地面水汽压逐日整编资料,根据经验表达式计算得到了重庆地区43年整层大气可降水量序列,统计分析了重庆地区可降水量的时空分布特征及气候变化趋势,并探讨了可降水量与降水量的关系。结果表明,重庆地区可降水量整体呈西多东少分布,与其年降水转化率和年降水量的分布大致相反;1966—2008年重庆地区可降水量呈增长趋势,各季节增长幅度不同,东北部和中西部偏南区域增长最显著;可降水量与降水量的关系较复杂,仅西部的部分站点二者显著相关,其余地区二者的相关性很小;可降水量仅为降水量的必要条件,即强降水的发生需要大的可降水量(水汽),但大的可降水量不一定能产生强降水;旱年与涝年相比,在盛夏和初秋(伏旱期)的高可降水量日数显著偏少。Abstract: Based on surface daily vapor pressure data of 34 stations in Chongqing from 1966 to 2008, precipitable water datasets were calculated according to empirical formulas for a period of 43 years. The spatial and temporal distribution and climatological trend of precipitable water were analyzed and the relationship between precipitable water and precipitation was also discussed. There is more precipitable water in the west than in the east and more in the south than in the north, but the rainfall rate of precipitable water is higher in the east than in the west. The precipitable water in Chongqing has an increasing trend form 1966 to 2008, and the growth rate is different from season to season. The growth rate over northeast Chongqing and south part of west and central Chongqing is significant. The relationship between precipitable water and precipitation is complex, being significant only in part of its westwen regions. However, the precipitable water is only a necessary condition for precipitation but large precipitable water does not result in heavy rainfall necessarily. In summer and early fall, precipitable water in drought years is much less than that in flood years.
-
Key words:
- meteorology /
- spatial and temporal distribution /
- empirical formulas /
- precipitable water /
- precipitaion
-
[1] 蔡英,钱正安,吴统文,等. 青藏高原及周围地区大气可降水量的分布、变化与各地多变的降水气候[J]. 高原气象,2004,23(1):33-12. [2] 杨红梅,葛润生,徐宝祥. 用单站探空资料分析对流层气柱水汽总量[J]. 气象,1998,24(9):8-11. [3] 杨景梅,邱金恒.我国可降水量同地面水汽压的经验表达式[J].大气科学,1996,20(5):620-626. [4] 杨景梅,邱金恒.用地面湿度参数计算我国整层大气可降水量及有效水汽含量的方法研究[J].大气科学,2002,26(1):10-12. [5] 朱元竞,李万彪,陈勇.GMS-5估计可降水量的研究[J].应用气象学报,1998,9(1):9-15. [6] 李万彪,朱元竞.利用GMS-5红外分裂窗数据反演水汽的应用研究[J].北京大学学报(自然科学版),1998,34(1):35-41. [7] 孙凡,陈渭民,杨昌军,等.GMS-5卫星资料和常规地面资料反演大气可降水量[J].南京气象学院学报[J],2004,27(5):68-76. [8] 丁金才,黄炎,叶其欣,等. 2002年台风Ramasun影响华东沿海期间可降水量的GPS观测和分析[J]. 大气科学,2004,28(4):134-145. [9] 姚建群,丁金才,王坚捍,等. 用GPS可降水量资料对一次大-暴雨过程的分析[J]. 气象,2005, 31(4):49-53. [10] 王勇,柳林涛,郝晓光,等. 准实时地基GPS可降水量的解算方案与可靠性研究[J]. 热带气象学报,2007,23(2):177-181. [11] 王勇,刘严萍,柳林涛,等. 区域GPS网对流层延迟直接推算可降水量研究[J]. 热带气象学报,2007, 23(5):510-514. [12] 张斌,薛根元,张双成. 基于IGS超级跟踪站近实时解算浙江地基GPS大气可降水量[J]. 热带气象学报,2009,25(2):222-226. [13] 张学文. 可降水量与地面水汽压力的关系[J]. 气象,30(2):9-11. [14] 卢士庆,闫宾,刘晓东. 几种求算大气可降水量方法比较[J]. 内蒙古气象,2009(1):15-18. [15] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京:气象出版社,2007. [16] 翟盘茂,周琴芳. 中国大气水分气候变化研究[J]. 应用气象学报, 1997,8(3):342-351.
点击查看大图
计量
- 文章访问数: 1964
- HTML全文浏览量: 4
- PDF下载量: 2812
- 被引次数: 0