ANALYSES OF A MICROPHYSICAL RESPONSE TO THE SEEDING IN TWO ARTIFICIAL DISSIPATION CASES OF FOG
-
摘要: 2009 年11—12 月在天津市武清区实施了两次消雾外场试验。11 月6—7 日,利用燃烧烟条的方式播撒吸湿性焰剂对暖雾实施催化;11 月30 日—12 月1 日,利用播撒液氮的方式实施冷雾消雾试验。对两次消雾试验期间雾的微物理观测资料分析发现,雾对催化有明显响应,具体表现为:雾滴浓度先增后减且变化剧烈,液态水含量、雾滴大小等微物理特征量也发生了显著变化;催化期间雾滴谱均出现了谱宽加大的现象,催化结束后谱宽恢复至催化前状态;催化效应导致出现了处于不同发展阶段的雾滴,雾滴谱发生了单峰分布和双峰分布间的变换:催化前滴谱为单峰分布,催化期间出现双峰谱;多个短时双峰谱反复出现;首个双峰谱出现后,滴谱逐渐由单调递减向单峰、双峰转变;催化结束后,滴谱由双峰谱恢复为单峰谱。分析认为:催化后暖雾中发生成熟过程(Ripening Process),而冷雾催化后则启动了贝吉隆过程(Bergeron process)。Abstract: Two field experiments were performed in order to dissipate the fog at Wuqing District of Tianjin in November and December of 2009. Hygroscopic particles were seeded to dissipate fog droplets on 6-7 November, 2009. Liquid nitrogen (LN) was seeded into the natural supercooled fog in the experiments of 30 November –1 December, 2009. Significant response was found after seeding. Obvious changes were observed in the microstructure of fog in the field experiments. The number concentration of fog droplet changes dramatically; it increased first and then decreased after seeding. Remarkable variation also was found in the Liquid Water Content(LWC) and in the size of fog droplet. The Droplet size distribution(DSD) of fog broadened during the seeding experiments. The DSD became narrow after the seeding ended. Droplets at different stages of growth were found after seeding, resulting in a transform of DSD between unimodal distribution and bimodal distribution. The DSD was unimodal before seeding and then bimodal distributions emerged during the seeding experiment. Finally, the DSD became unimodally distributed once again.
-
Key words:
- artificial dissipation of fog /
- microphysical changes /
- response
-
[1] VARDIMAN L, FIGGINS E D, APPLEMAN H S. Operational dissipation of supercooled fog using liquid propane[J]. Journal of Applied Meteorology, 1971, 10(3): 515–525. [2] 曹学成, 王伟民. 液氮人工消过冷雾论文集[M]. 北京: 气象出版社, 1999. [3] 李子华. 中国近40年来雾的研究[J]. 气象学报, 2001, 59(5): 616-624. [4] HOUGHTON H G. The Transmission of visible light through fog[J]. Physical Review, 1931, 38(1): 152. [5] JIUSTO J E, PILIé R J, KOCMOND W C. Fog modification with giant hygroscopic nuclei[J]. Journal of Applied Meteorology, 1968, 7(5): 860 -869. [6] BRUCE A Kunkel, BERNARD A. Silverman. A comparison of the warm fog clearing capabilities of some hygroscopic materials[J]. Journal of Applied Meteorology, 1970, 9(4): 634-638. [7] ALAN I Weinstein, BERNARD A Silverman. A numerical analysis of some practical aspects of airborne urea seeding for warm fog dispersal at airports[J]. Journal of Applied Meteorology, 1973, 12(5): 771-780. [8] ELDRIDGE R G. A few fog drop-size distributions[J]. Journal of Meteorology, 1961, 18(5): 671-676. [9] RALPH G. Eldridge. Measurements of cloud drop-size distributions[J]. Journal of Meteorology, 1957, 14(1): 55-59. [10] ELDRIDGe R G. Haze and fog aerosol distributions[J]. Journal of the Atmospheric Sciences, 1966, 23(5): 605–613. [11] ARNULF A, BRICARD J, CURé E, et al. Transmission by haze and fog in the spectral region 0.35 to 10 microns[J]. Journal of the Optical Society of America, 1957, 47(6): 491-497. [12] GULTEPE I, HANSEN B, COBER S G, et al. The fog remote sensing and modeling field project[J]. Bulletin of the American Meteorological Society, 2009, 90(3): 341-359. [13] NEIBURGER M, CHIEN C W. Computations of the growth of cloud drops by condensation using an electronic digital computer[C]//Physics of precipitation: proceedings. 1959: 191. [14] 王庚辰. 雾微物理结构的观测分析[J]. 气象学报, 1981, 39(4): 452-459. [15] 杨连素. 青岛近海海雾微物理结构的初步观测[J]. 海洋科学, 1985, 9(4): 49–50. [16] 邓雪娇, 吴兑, 叶燕翔. 南岭山地浓雾的物理特征[J]. 热带气象学报, 2002, 18(03): 227-236. [17] 唐浩华, 范绍佳, 吴兑,等. 南岭山地浓雾的微物理结构及演变过程[J]. 中山大学学报: 自然科学版, 2002, 41(4): 92–96. [18] 刘端阳, 濮梅娟, 杨军,等. 2006年12月南京连续4天浓雾的微物理结构及演变特征[J]. 气象学报, 2009, 67(001): 147–157. [19] 鲍磊, 杨军, 王巍巍,等. 南京冬季一次浓雾过程的微物理特征[J]. 安徽农业科学, 2009, 37(28): 13 700-13 701, 13 704. [20] 屈凤秋, 刘寿东, 易燕明,等. 一次华南海雾过程的观测分析[J]. 热带气象学报, 2008, 24(5): 490-496. [21] 黄辉军, 黄健, 毛伟康,等. 茂名地区海雾含水量的演变特征及其与大气水平能见度的关系[J]. 海洋学报(中文版), 2010, 32(2): 40-53. [22] 李晓娜, 黄健, 申双和,等. 一次高压型海雾中的液态含水量演变特征[J]. 热带气象学报, 2010, 26(1): 79-85. [23] FIKRETTIN Ç, JOHN D M. Droplet spectra broadening by ripening process. part i: roles of curvature and salinity of cloud droplets[J]. Journal of the Atmospheric Sciences, 1999, 56(17): 3 091-3 105.
点击查看大图
计量
- 文章访问数: 1871
- HTML全文浏览量: 6
- PDF下载量: 190
- 被引次数: 0