STUDY OF CLIMATE PREDICTION METHOD BASED ON EMD AND ENSEMBLE PREDICTION TECHNIQUE
-
摘要: 气候系统是典型的非平稳性系统,然而对于气候观测数据的处理通常是在时间序列平稳的假定下完成的,比如气温和降水的多步预报,这通常会导致预报准确度较低。为改进该缺陷,首先将非平稳数据序列分解成平稳的、多尺度特征的本征模态函数分量(IMF),再使用数值集合预报与逐步回归分析相结合的方式对每一个IMF 分量构建不同的预报模型,最后线性拟合成预报结果。通过Visual Studio 2008 开发平台使用上述方法建立了一个短期气候预报系统,采用广西区88 个气象站1957—2005 年的2 月距平气温数据进行实际验证。结果表明,相对于普通预测和单一预测方法,加入了EMD 和集合预报技术的方法在仅用历史资料进行多步预测的情况下,对于气候的变化趋势以及突发性气候具有更好的预报能力。
-
关键词:
- 短期气候预测 /
- 经验模态分解(EMD) /
- 集合预报 /
- 均生函数逐步回归模型 /
- 时间序列
Abstract: Climate systems are generally non-stationary. The data processing of climate observations, e.g. multi-step prediction of temperature and precipitation, is usually performed under an assumption that the time series is stationary. This may lead to unsatisfied accuracy in the prediction. In this paper, we study on a new method integrating an ensemble prediction technique and a stepwise regression model based on Mean-Valued Generated Function. By using the Empirical Mode Decomposition (EMD), we decomposed a non-stationary time series into a series of Intrinsic Mode Function (IMF) components and a trend component which is preliminary stable. Then a prediction model was built for each IMF component using an ensemble prediction technique and a stepwise regression analysis. The final results can be obtained by linear fitting. Using this method and the Visual Studio 2008, we developed a short-term climate prediction system which is calibrated by the temperature anomaly from 88 meteorological observation stations in Guangxi Zhuang Autonomous Region during the Februarys of 1957—2005. Compared to the normal and single prediction, the new method involving the EMD and the ensemble prediction technique has better performance in the prediction of climate change trend and abrupt climate changes when the multi-step prediction is made using historical data. -
[1] 林振山,汪曙光. 近四百年北半球气温变化的分析: EMD 方法的应用[J]. 热带气象学报,2004,24(01): 90-96. [2] 沈永生,黄发明,章达华,等. 支持向量机在三明主汛期短期气候预测中的应用[J]. 广东气象,2009(2): 23-25. [3] 乌文奇,李春云,邰文河,等. 应用最优气候值方法进行短期气候预测[J]. 内蒙古气象,2008(1):12-13. [4] 董秀丽,王贵平,哈立宇. 用均生函数模型做赤峰夏季温度和降水气候预测实验[J]. 内蒙古气象,2008(1): 24-26. [5] HUANG N E,ZHENG S. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary times series analysis[J]. Proceedings of the Royal Society London,1998,454: 903-995. [6] 刘慧婷. EMD 方法的研究与应用[D]. 安徽:安徽大学计算机科学与技术学院,2004. [7] 黄大吉,赵进平,苏纪兰. 希尔伯特-黄变换的端点延拓[J]. 海洋学报,2003,25(1): 1-11. [8] ZHAO J P,HUANG D J. Mirror extending and circular spline function for empirical mode decomposition method[J]. Journal of Zhejiang University,2001,2(3): 247-252. [9] 朱金龙,邱晓晖. 正交多项式拟合在EMD 算法端点问题中的应用[J]. 计算机工程与应用,2006,23: 72-74. [10] 邓拥军,王伟,钱成春,等. EMD 方法及Hilbert 变换中边界问题的处理[J]. 科学通报,2001,46(3): 257-263. [11] 陈超辉,王铁,谭言科,等. 2003 年江淮汛期多模式短期集合预报方法研究[J]. 热带气象学报,2009,25(4):449-457. [12] 张立凤,罗雨. 基于BGM 的暴雨集合预报初始扰动发展分析[J]. 热带气象学报,2009,25(5):571-576. [13] 袁金南,万齐林,黄燕燕,等. 南海热带气旋路径集合预报试验[J]. 热带气象学报,2005,22(2):105-112. [14] 魏凤英,曹鸿兴. 长期预测的数学模型及应用[M]. 北京: 气象出版社,1990: 9-12. [15] 陈长胜,林开平,王盘兴. 华南前汛期降水异常与水汽输送的关系[J]. 南京气象学院学报,2004,27 (6): 721-727. [16] JIAWEI Han,MICHELINE Kamber 著,范明,孟小峰译. 数据挖掘概念与技术[M]. 北京: 机械工业出版社,2008: 46. [17] BROCKWELL Peter J,DAVIS Richard A.田铮译. 时间序列的理论与方法(第二版)[M]. 北京:高等教育出版社,2001. [18] 李俊,廖移山,张兵,等. 集合数值预报方法在山洪预报中的初步应用[J]. 高原气象,2007,26: 860-861. [19] STENSRUD D J,BAO J,WARNER T. Using initial condition and model physics perturbation in short-range ensem-ble simulations of mesoscale connective system[J]. Monday Wea Rev,2000,128: 2 077-2 107. [20] 赵振国,刘海波. 我国短期气候预测物理统计技术发展的几个问题[J]. 南京气象学院学报,2004,27 (6): 721-727.
点击查看大图
计量
- 文章访问数: 1653
- HTML全文浏览量: 5
- PDF下载量: 2404
- 被引次数: 0