低纬大气振荡的一个非线性模式
A NONLINEAR MODEL OF THE ATMOSPHERIC OSCILLATION IN LOW LATITUDES
-
摘要: 本文根据低纬大气基本要素场的分布特点,对控制低纬大气运动的方程组作了某些简化,建立了一个应用赤道β平画近似的描写低纬大气固有振荡的非线性模式。从这个模式出发,本文讨论了:(1)没有气压场影响时的纯惯性振荡;(2)考虑气压场且假定气压场是y的对称函数时的惯性振荡;(3)振荡平衡点的稳定性和在一定条件下出现的分岔现象;最后分析了纬向风速振荡周期变化的数值结果。本文研究指出: (i)纯惯性振荡只是在低纬的西风流场中才存在,纯惯性的线性振荡的圆频率为ω0=√β0μ0*,相应的振荡周期为一到两周。在非线性条件下,出现两种圆频率的振荡:ω0=√β0μ0和ω1=1/2β0y0,但一般对线性振荡的结果影响不大,只是在出现孤立子振子时(此时ω1=ω0),振荡周期迅速增长,出现长周期的低频和超低频振荡。 (ii)考虑了气压场后,不只是在低纬的西风流场中存在振荡,在弱东风流场中也会出现振荡。不过,低纬的弱气压场对惯性振荡的影响主要在于改变惯性稳定度的数值,但对振荡的周期影响不大。 (iii)惯性振荡的稳定性由惯性稳定度参数μ决定。在线性条件下,当μ<0时,低纬惯性振荡是稳定的,当μ>0时,低纬惯性振荡是不稳定的;但在非线性条件下,即便在μ>0时也会出现稳定的惯性振荡,这是非线性对不稳定增长的抑制作用所致。因而当参数μ由负值变到正值时,在b<0的条件下出现了超临界分岔。Abstract: In this paper,according to the distribution of basic meteorological element field and simplifying the governing equation in low latitudes a nonlinear model which takes into consideration the equatorial β-plane approximation and describes the natural oscillation of the atmosphere has been set up.Applying this model the following problems are discussed:(l)The pure inertial oscillation without the influence of pressure field. (2)The iner al oscillation with the influence of pressure field which is assumed to be a symmetric function in y. (3) The stability of equilibrium point and the bifurcation phenomenon on certain condition. (4)The numerical results of the periodic variation for the zonal wind.It is shown that: (l)there exists the pure inertial oscillation only in the westerly current of tropical atmosphere,the angular frequency of linear oscillation is ω0=√β0μ0*(β0 is the Rossby parameter,μ0*=μ0-β0y02/2,where μ0 is the initial zonal velocity and y0 is the initial longitudinal position),the corresponding oscillatory period is 1-2 weeks. There are two kinds of angular frequency under the nonlinear condition,the one isω0=√β0μ0,the other is ω1=β0y0/2. However their effect on the results of linear oscillation is little,only when a soliton oscillator occurs (ω1= ω0),the oscillatory period increases rapidly,the low frequency and ultra-low frequency oscillations are emerged. (2)When the pressure field is considered the oscillation exists not only in westerly current but also in the weak easterly current. However this weak pressure field has little effect on the oscillatory period,it changes mainly the velues of inertial stability. (3)The stability of inertial oscillation depends on the linear inertial parameter μ. Under the linear condition,the inertial oscillation is stable when μ<0 and unstable when μ>0; but under the nonlinear condition,the stable oscillation also hap pens even μ>0,this is as a result of the damped action of the nonlinearity on the unstable growing. Therefore,as the parameter μ changes sign from negative to positive the supercritical bifurcation takes place in b<0 (b is the strength parameter of nonlinear oscillation).
点击查看大图
计量
- 文章访问数: 983
- HTML全文浏览量: 0
- PDF下载量: 664
- 被引次数: 0