模式含有开关时遗传算法求解条件非线性最优扰动的有效性研究
-
摘要: 在基于条件非线性最优扰动(CNOP)的台风适应性观测研究中,针对预报模式的湿物理参数化产生的“on-off”开关导致传统伴随方法不能为最优化过程提供正确梯度这一现象,将模式含有“on-off”开关时求解CNOP的问题视为非光滑最优化问题,引入遗传算法,在给出详细的算法流程后,以一个在强迫项中含“on-off”开关的理想模式,分析了“on-off”开关对求解CNOP的影响,三个数值试验检验了模式含有“on-off”开关时遗传算法求解CNOP的有效性,并分析了不同初始种群对最优化结果的影响。结果显示,所采用的含有“on-off”开关的理想模式下,遗传算法能有效求解CNOP,最后对遗传算法求解CNOP的优缺点进行了详细讨论。
-
[1] LORENZ E N. A study of the predictability of a 28-variable atmospheric model[J]. Tellus, 1965, 17: 321-333.[2] MU M, DUAN W S, WANG B. Conditional nonlinear optimal perturbation and its application[J]. Nonlinear Processes in Geophysics, 2003, 10: 493-501.[3] MU M, ZHANG Z Y. Conditional nonlinear optimal perturbation of a two-dimensional quasigeostrophic model[J]. J Atmos Sci, 2006, 63(6): 1 587-1 640.[4] MU M, DUAN W S. A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation[J]. Chinese Sci Bull, 2003, 48: 1 045-1 047.[5] MU M, JIANG Z N. A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation [J]. China Sci Bull, 2007, 52: 1 457-1 462.[6] DUAN W S, LIU X C, ZHU K Y and MU M. Exploring the initial error that causes a significant spring predictability barrier for El Nino events[J]. J Geophysical Research, 2009, Accepted.[7] MU M, XU H and DUAN W S. A kind of initial errors related to “spring predictability barrier” for El Nino event in Zebiak-Cane model[J]. Geophysical Research Letters, 2007, 34, L03709, doi:10.1029/2006GL027 412.[8] DUAN W S, XUE F and MU M. Investigating a nonlinear characteristic of El Nino events by conditional nonlinear optimal perturbation[J]. Atmosphere Research, 2008, doi:10.1016/j.atmosres.2008.09.003.[9] DUAN W S, XU H, MU M. Decisive role of nonlinear temperature advection in El Nino and La Nina amplitude asymmetry[J]. J Geophysical Research, 2008, 113, C01014, doi:10.1029/2006JC003974.[10] DUAN W S, MU M. Conditional nonlinear optimal perturbation: applications to stability, sensitivity and predictability[J]. Science in China (D), 2009, Accepted. [11] 穆穆,王洪利,周菲凡. 条件非线性最优扰动方法在适应性观测研究中的初步应用[J]. 大气科学,2007, 31(6): 1 102-1 112.[12] XU Q. Generalized adjoint for physical process with parameterized discontinuities, part I: Basic issues and heuristic examples[J]. J Atmos Sci, 1996, 53: 1 123-1 142.[13] XU Q. Generalized adjoint for physical process with parameterized discontinuities, part II: Vector formulations and matching conditions[J]. J Atmos Sci, 1996, 53: 1 143-1 155.[14] ZOU X L. Tangent linear and adjoint of “on-off” processes and their feasibility for use in 4-dimensional variational data assimilation[J]. Tellus, 1997, 49A: 3-31. [15] MU M, WANG J F. An adjoint method for variational data assimilation with physical “on-off” processes[J]. J Atmos Sci, 2003, 60: 2 010-2 018.[16] MU M, ZHENG Q. Zigzag oscillations in variational data assimilation with physical “on-off” processes[J]. Mon Wea Rev, 2005, 133: 2 711-2 720.[17] ZHENG Q, MU M. The effects of the model errors generated by discretization of “on-off” processes on VDA[J]. Nonlinear Processes in Geophysics, 2006, 13(3): 309-320.[18] ZHU J, KAMACHI M, ZHOU G Q. Nonsmooth optimization approaches to VDA of models with on/off parameterizations: theoretical issues[J]. Adv Atmos Sci, 2002, 19(3): 405-424.[19] HAUPT S E. A demonstration of coupled receptor/dispersion modeling with a genetic algorithm[J]. Atmos Environ, 2005, 39: 7 181-7 189.[20] ALLEN C T, HAUPT S E. Source characterization with a genetic algorithm-coupled dispersion- backward model incorporating SCIPUFF[J]. J Appl Meteor Climat, 2007, 46: 273-287.[21] AHRENS B. Variational data assimilation for a Lorenz model using a non-standard genetic algorithm[J]. Meteorol Atmos Phys, 1999, 70: 227-238.[22] 胡娅敏,丁一汇,沈桐立. 基于遗传算法的四维变分资料同化技术的研究[J]. 大气科学,2006,30(2): 248-256.[23] 王顺风,沈桐立,张建伟,等. 基于进化方向遗传算法的四维变分资料同化方[J]. 南京气象学院学报, 2002, 25(6): 740-746.
点击查看大图
计量
- 文章访问数: 2455
- HTML全文浏览量: 0
- PDF下载量: 1958
- 被引次数: 0